Code-based cryptography II

Monika Trimoska

Selected Areas in Cryptology - Part 1
Spring, 2024

TU/e

Error-correcting codes (recall)

. e *, (C
A A — Encod1ng Decoding -_— AA
e’ e’

Alice Bob

e Primary use case: communication over a noisy channel.
e Main idea: introduce some redundancy in order to be able to correct the errors.
e Some structured error-correcting codes have efficient decoding algorithms.

e Decoding is, in general, a hard problem - so it is hard for random codes.

Error-correcting codes (recall)

. e *, (C
A A — Encod1ng Decoding -_— AA
e’ e’

Alice Bob

e Primary use case: communication over a noisy channel.
e Main idea: introduce some redundancy in order to be able to correct the errors.
e Some structured error-correcting codes have efficient decoding algorithms.

e Decoding is, in general, a hard problem - so it is hard for random codes.

L-V Hard problems (often) find their use in cryptography:.

d2d

Linear codes (recall)

-—-—-- JTinearcode - - - - - - - - —"—-"—"—"————“ -/ - - - —“ =/ - = =@ = = — - — - — — -

An [n, k] linear code € over F,is a k-dimensional subspace of [Fg.

Linear codes (recall)

-—-—-- JTinearcode - - - - - - - - —"—-"—"—"————“ -/ - - - —“ =/ - = =@ = = — - — - — — -

An [n, k] linear code € over F,is a k-dimensional subspace of [Fg.

e The parameter n is called the length of the code.

Linear codes (recall)

-—-—-- JTinearcode - - - - - - - - —"—-"—"—"————“ -/ - - - —“ =/ - = =@ = = — - — - — — -

An [n, k] linear code € over F,is a k-dimensional subspace of [Fg.

e The parameter n is called the length of the code.

e The parameter k is called the dimension of the code.

Linear codes (recall)

-—-—-- JTinearcode - - - - - - - - —"—-"—"—"————“ -/ - - - —“ =/ - = =@ = = — - — - — — -

An [n, k] linear code € over F,is a k-dimensional subspace of [Fg.

e The parameter n is called the length of the code.
e The parameter k is called the dimension of the code.

e The elements in the code are called codewords.

Linear codes (recall)

-—-—-- JTinearcode - - - - - - - - —"—-"—"—"————“ -/ - - - —“ =/ - = =@ = = — - — - — — -

|
. An [n, k] linear code € over [is a k-dimensional subspace of [,
|

e The parameter n is called the length of the code.
e The parameter k is called the dimension of the code.

e The elements in the code are called codewords.

- - - Hamming metric - - - - - - - - - - ------"-"-"—--"-"—-"—-—--—-"—-—---—-—-—--

For x €], the Hamming weight of X is the number of nonzero elements, aka.

wt(x) = [{i € {1,...,n}|x; #0}].

Linear codes (recall)

-—-—-- JTinearcode - - - - - - - - —"—-"—"—"————“ -/ - - - —“ =/ - = =@ = = — - — - — — -

|
. An [n, k] linear code € over [is a k-dimensional subspace of [,
|

e The parameter n is called the length of the code.
e The parameter k is called the dimension of the code.

e The elements in the code are called codewords.

- - - Hamming metric - - - - - - - - - - ------"-"-"—--"-"—-"—-—--—-"—-—---—-—-—--

For x €], the Hamming weight of X is the number of nonzero elements, aka.

wt(x) = [{i € {1,...,n}|x; #0}].

The matrix G € [F];X” is called a generator matrix of &, if

€ = {xG|x € [F’j]}.

Binary linear codes

- - - Binary linear code - - - --- - - - - - -----"--"---------------

|
. An [n, k] binary linear code € is a k-dimensional subspace of .
|

e The parameter n is called the length of the code.
e The parameter k is called the dimension of the code.

e The elements in the code are called codewords.

- - - Hamming metric - - - - - - - - - - ------"-"-"—--"-"—-"—-—--—-"—-—---—-—-—--

For x € [}, the Hamming weight of X is the number of nonzero elements, aka.

wt(x) = [{i € {1,...,n}|x; #0}].

The matrix G € [FSX” is called a generator matrix of &, if

€ = {xG|x € [Fg}.

Binary linear codes

- - - Binary linear code - - - --- - - - - - -----"--"---------------

An [n, k] binary linear code € is a k-dimensional subspace of [5.

Binary linear codes

- - - Binary linear code - - - --- - - - - - -----"--"---------------

An [n, k] binary linear code € is a k-dimensional subspace of [5.

Codewords: 4,(10101) + A,(11000) + 45(11110)

Exampte. ¢, = (111)G = (10011),
¢, = (100)G = (10101)

Decoding

— Encoding: ¢ = mG

— Introducing error e of low weight: y = ¢ + ¢ = mG + ¢, s.t. wt(e) = 1.

— Decoding: Giveny, find ¢ s.t. y = ¢ + e and wt(e) < 1.

Representations of linear codes

— The row space of a generator matrix G € F5*" -

€ = {xG|x e [F’;}.

Representations of linear codes

— The row space of a generator matrix G € F5*" -

€ = {xG|x e [F’;}.

— The kernel space of a parity-check matrix H € [F(Z”_k)xn ;

¢ = {c|Hc=0,cel;}.

*We are omitting the transpose (T) for vectors.

—_—0 O =
—_ e O O
p—t e OO

Representations of linear codes

— The row space of a generator matrix G € F5*" -

€ = {xG|x e [F’;}.

— The kernel space of a parity-check matrix H € [F(Z”_k)xn :

¢ = {c|Hc=0,cel;}.

*We are omitting the transpose (T) for vectors.

—_—0 O =
—_ e O O
p—t e OO

From G to H

From G to H

- - Systematic form -------------------------------

A systematic generator matrix is a generator matrix of the form

From G to H

1= = = = 7 71
I

information part

- Systematic form -------------------------------

A systematic generator matrix is a generator matrix of the form

(I,| Q), where I, is the k X k identity matrix and Q is a k X (n — k) matrix.

redundant part

From G to H

1= = = = 7 71
I

information part

- Systematic form -------------------------------

A systematic generator matrix is a generator matrix of the form

(I, | Q), where I is the k X k identity matrix and Q is a k X (n — k) matrix.

redundant part

From G to H

- Systematic form -------------------------------

A systematic generator matrix is a generator matrix of the form

(I, | Q), where I is the k X k identity matrix and Q is a k X (n — k) matrix.

1= = = = 7 71

information part redundant part

— When ¢ = mG, the first k positions of ¢ are m.

From G to H

1= = = = 7 71
I

information part

- Systematic form -------------------------------

A systematic generator matrix is a generator matrix of the form

(I, | Q), where I is the k X k identity matrix and Q is a k X (n — k) matrix.

redundant part

: Exampmq (1010)G = (1010101)

From G to H

1= = = = 7 71
I

information part

- Systematic form -------------------------------

A systematic generator matrix is a generator matrix of the form

(I, | Q), where I is the k X k identity matrix and Q is a k X (n — k) matrix.

redundant part

From G to H

- Systematic form -------------------------------

A systematic generator matrix is a generator matrix of the form

(I, | Q), where I is the k X k identity matrix and Q is a k X (n — k) matrix.

1= = = = 7 71

information part redundant part

— We can form the parity-check matrix as H = Q'] L.

From G to H

- Systematic form -------------------------------

A systematic generator matrix is a generator matrix of the form

(I, | Q), where I is the k X k identity matrix and Q is a k X (n — k) matrix.

1= = = = 7 71

information part redundant part

From G to H

— Wehave G = (L, [Q).

— We can form the parity-check matrixas H = (Q" |I _)).

From G to H

— Wehave G = (L, [Q).

— We can form the parity-check matrixas H = (Q" |I _)).

k Every codeword is in the kernel space of H:

From G to H

— Wehave G = (L, [Q).

— We can form the parity-check matrixas H = (Q" |I _)).

k Every codeword is in the kernel space of H:

L

HmG)' =HG'm" = (Q" I,_,) (QT

)mTz(QT+QT)mT=O-mT=O

Example: Hamming code

h Columns correspond to a bit pattern of length (n — k).

E‘:XO\MF’L@.‘ n="7k=4

1 T 01 1 0 0
H={1 011010
O 1 1 1 0 0 1

Example: Hamming code

h Columns correspond to a bit pattern of length (n — k).

Eix.&m?i,e‘., n=7k=4

p—t OO
el e)

SO =
S = O

—_ O O
N

— OO = OO = OO =

Example: Hamming code

’ An error occurs.

Examgieﬂ n=7k=4

—_— O =
—_—— O
-
SO ==
O = O
— O O
N———"

—_— O = O = O

SO OO OO =

Example: Hamming code

’ An error occurs.

Examgieﬂ n=7k=4

—_ O —
—_—— O
-
SO ==
O = O
— O O
N———"

—_— O = O = O

SO OO OO =

Example: Hamming code

’ An error occurs.

Examgieﬂ n=7k=4

—_— O =
—_—— O
-
SO ==
O = O
— O O
N———"

—_— O = O = O

OO0 O —=O

Example: Hamming code

’ An error occurs.

Examgieﬂ n=7k=4

—_ O =
—_—— O
-
SO ==
O = O
— O O
N———"

—_— O = O = O

OO0 OO = O

Example: Hamming code

’ An error occurs.

Examgieﬂ n=7k=4

—_— O =
—_—— O
-
SO ==
O = O
— O O
N———"

—_— O = O = O

S = OO O O O

Example: Hamming code

’ An error occurs.

Examgieﬂ n=7k=4

—_— O =
—_—— O
-
SO -
O = O
— O O
N———"

—_— O = O = O

S = O O O O O

Example: Hamming code

h An error occurs.

Eix.&m?i,e‘., n=7k=4

—t OO
—t e OO
-
SO =
O = O
—_— O O
SN——

The failure pattern uniquely
identifies the error location.

p—t OO = OO = OO
|
O = O O O O O

Jisd

Example: Hamming code

h An error occurs.

Examgieﬂ n=7k=4

—t OO
—t e OO
-
SO =
O = O
—_— O O
SN——

The failure pattern uniquely
identifies the error location.

(> We will call it a
syndrome.

p—t OO = OO = OO
|
O = O O O O O

Syndrome decoding

- - Syndrome ----------------- |
I

i The syndrome of a word y € [} is s = Hy. :
I

—————————————————————————————

Syndrome decoding

- - Syndrome ----------------- |
I

i The syndrome of a word y € [} is s = Hy. :
I

—————————————————————————————

Hy = H(c+e) =Hc+ He =0+ He = He

Syndrome decoding

--- Syndrome ----------------- |

I
. The syndrome of awordy € [, iss = Hy. 1
I

Hy = H(c+e) =Hc+ He =0+ He = He

() The syndrome depends only on

the error vector.

The syndrome decoding problem

Given a syndrome s = He, find e such that wt(e) < 7.

The syndrome decoding problem

| Given a syndrome s = He, find e such that wt(e) < 7. |

—t OO
— e OO
r—tr—tr—km
o O =
O = O

L-V Find e of minimum weight.

&

qd

e
O
Information set decoding
j’/;

P

Information set decoding algorithms

h Focus on the case wt(e) = t.

Given a syndrome s = He, find e such that wt(e) = 1.

Brute force

Brute force

|

[Entry is 0 l

|

.l Entryis1 |
|

" B EntryisOorl :

|

e s — o o o e e e e e e e s s—

Brute force

|
[Entry is 0 l

|
.l Entryis1 |
: :
| |

[EntryisOorl

e s — o o o e e e e e e e s s—

Brute force

L.y s is equal to the sum of the columns where ¢; is nonzero.

|
[Entry is 0 l

|
.l Entryis1 |
l l
| |

[EntryisOorl

e s — o o o e e e e e e e s s—

Entry is 0

Brute force

[EntryisOorl

e s — o o o e e e e e e e s s—

| |
| |
| |
.l Entryis1 |
: :
| |

L.y s is equal to the sum of the columns where ¢; is nonzero.

Brute force: complexity

Pick any group of # columns of H, add them and
compare with s.

Prange’s attack

H € S

Prange’s attack

H € S

Prange’s attack

H' = UHP

Prange’s attack

H' = UHP e’ s’ = Us

— Permute H and bring to systematic form.

|
|
|
Suppose that all 7 errors are in the identity (right) part. Then ¢’ = (000...) || Us and wt(Us) = . :
|
|
|

Prange’s attack

H' = UHP e’ s’ = Us

— Permute H and bring to systematic form.

Suppose that all 7 errors are in the identity (right) part. Then ¢’ = (000...) || Us and wt(Us) = .

— If wt(Us) = 1, then output unpermuted version of €.

— Else, return to the first step and rerandomize: choose a new permutation.

Prange’s attack: complexity

— Permute H and bring to systematic form.

—> Else, return to the first step and rerandomize: choose a new permutation.

|

|

| :

. — It wt(Us) = ¢, then output unpermuted version of e.
|

|

Prange’s attack: complexity

L—V Probability that we are in the correct configuration:

— Permute H and bring to systematic form.

I

I

I :

. — It wt(Us) = ¢, then output unpermuted version of e.

| —> Else, return to the first step and rerandomize: choose a new permutation.
I

All errors are in
the identity part

n—k\

[

n
[

Prange’s attack: complexity

L-V Cost: ————

— Permute H and bring to systematic form.
—> If wt(Us) = ¢, then output unpermuted version of e.

—> Else, return to the first step and rerandomize: choose a new permutation.

n
[

n—=k
[

L—V Probability that we are in the correct configuration:

matrix operations.

All errors are in
the identity part

n—k\

[

n
[

[Lee-Brickell attack

H' = UHP

[Lee-Brickell attack

H' = UHP e’ s’

— Permute H and bring to systematic form.

Suppose that there are (f — p) errors are in the identity (right) part and p errors in the left part.

[Lee-Brickell attack

H = UHP e’ H, s+Qp

— Permute H and bring to systematic form.

Suppose that there are (f — p) errors are in the identity (right) part and p errors in the left part.

Then, s’is random-looking, but s’ summed with the error columns on the left has weight ¢ — p:
wi(s'+Qp) =1—p.

[Lee-Brickell attack

H = UHP e’ H, s+Qp

Let p be a vector chosen from

{p € F*|wt(p) = p}

— Permute H and bring to systematic form.

Suppose that there are (f — p) errors are in the identity (right) part and p errors in the left part.

Then, s’is random-looking, but s’ summed with the error columns on the left has weight ¢ — p:

[Lee-Brickell attack

H = UHP e’ H, s+Qp

— Permute H and bring to systematic form.

— Pick p of the columns on the left and compute their sum: Qp.

I

I

I

I

I

> IEwi(s'+Qp) =1 —p then pute’ = p|| (s’ + Qp). Output unpermuted version of e.

| Else, return to the second step to choose another subset of columns from Q, or return to the first step
I

I

and rerandomize.

__

Lee-Brickell attack: complexity

ufjet + 0=
I i .

Lee-Brickell attack: complexity

-

-

Probability that we are in the correct configuration:

+|+|

[— p errors are in

the identity part

-

n—=k
[—p

p errors are in the

left part

9

Lee-Brickell attack: complexity

ujiiet + §=mn
I i .

i : :
. [— p errors are in p errors are in the

the identity part left part

k

) column additions.
P

matrix operations + (

[Leon’s attack

H' = UHP e’ H, s+Qp
= .
e + H =
-

h Since 8"+ Qp should be of low weight, we check instead if an arbitrary subset of [/ rows are all zero.

[Leon’s attack

B
|]

H; denotes the matrix
consisting of the rows of H | 4 4+ — =
indexed by L]
A m -
|
|

— Pick a subset L of / rows: H;.
— Permute H and bring to systematic form (then H, = (Q I IL)).
— Pick p of the columns on the left and compute their sum: Q, p.
— Ifwt(s; + Q;p) =0
— Ifwt(s'"+ Qp) =1 —pthenpute’ = p||(s'+ Qp). Output unpermuted version of e.

Else, return to the third step to choose another subset of columns from Q, or return to the second step

and rerandomize.

Else, return to the third step to choose another subset of columns from Q, or return to the second step and
rerandomize.

Leon’s attack: complexity

- -
. N
; B
;
N

L-V Probability that we are in the correct configuration:

Stern’s attack

H' = UHP

e’ H, s+Qp
_ _
_ + B =

_

Stern’s attack

H' = UHP e’ H, s+Qp
= .
e + H =
-

P

h Suppose that there are exactly % errors in the first half of Q and exactly 5 errors in the first half of Q.

Stern’s attack

H' = UHP e’ H, s+Qp

B
4

h Suppose that there are exactly % errors in the first half of Q and exactly % errors in the first half of Q.

L.y Instead of looking for an all zero subset of rows, we are looking for a collision.

Stern’s attack

H
|]

H
1
4+
1
H N

— Pick a subset L of [rows: H;.

— Permute H and bring to systematic form (then H; = (Q I IL)).

— Split Q into two disjoint parts: Q = (A B).
T of Aa) for a1l a and b are vectors chosen from
_> /
Build a list of vectors (s; + A;a) for all (many) a. > W= (we P2 | wi(w) = p \
— For all (many) b : > 2

— If B, b collides with (is equal to) any of the vectors in the list built in the fourth step

If wt(s"+ Aa+ Bb) =¢—pthenpute' =a||b||(s’"+ Aa + Bb). Output unpermuted
version of e.

— Else return to the second step and rerandomize. C“%

—

Stern’s attack: complexity

]

+|+|

Probability that we are in the correct configuration:

G,

ISD algorithms summary

Prange k -k
0]
[Lee-Brickell k n—k

[p]
Le()n n—k—1

mm

k/2 k/2 n—k—1

Stern 7 = —

&

. "N
1q S <

Nex; ;1me:

MPC-in-the-Head construction

>

P

