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d(A,B) = Rank(A — B)

Isometry ;2 a homomorphism of matrix codes C — D such that for all C € C,

Rank C = Rank u(C)

Matrix Code Equivalence (MCE) problem [Berger, 2003]
MCE(k, n,m,C,D):

Input: Two k-dimensional matrix codes C,D C M pxn(Fyq)
Question: Find — if any — an isometry p: C — D.

Known: Any isometry 1 : C — D can be written, for some A € GL,,(g),B € GL,(q), as
C—ACBeD 2
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Known results [Couvreur, Debris—Alazard & Gaborit, 2021]

#:C— ACB € D, with A € GLn,(q) and B € GL,(q)

» when A =Id,,, or B =1d,, finding p is easy (MCRE)
0 a o 2 0 0
» implicit upper bound O*(g™ ) time: brute force smallest side, then solve MCRE
» code equivalence for Fgm-linear codes with rank metric reduces to MCRE
» MCE is at least as hard as Monomial Equivalence Problem in the Hamming metric
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Multivariate crypto basics

> systems of multivariate polynomials P = (p1, p2, . - ., px), every ps polynomial in N
variables xq, ..., xy
» most interesting when each ps is at most degree 2 and homogeneous
ps(X1,. .., xn) = Z ’yfjs)x,-xj 'y,g-s) eF,

Quadratic Maps Linear Equivalence (QMLE) problem
QMLE(N, k, F, P):

Input: Two k-tuples of quadratic maps

F=(f,fy...f), P=(p1,p2s---,Px) € Fo[x1,...,xn]*
Question: Find —if any = S € GLy(q), T € GL«(q) such that

P(x)=F(xS)-T
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Quadratic maps

Y1 ... BY X1
Ps = Z’Y,S'S)Xixj = (x1,...,xn)
% YNN XN
PG) € -/CAFNXN(Fq)
so with x = (xq, ..., xy), we get ps(x) = xP©)xT

so QMLE can be rewritten in matrix form

3 TP =SFEST, Vs 1< s <k,

1<r<k

where t;; are entries of T~!
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Solving MCE

» reduction: an MCE instance (k, n, m,C, D) results in a QMLE instance
(m+ n, k, F,P) with
A 0
0 BT

» solving the instance using a birthday-based algorithm ©*(g%/3(m+") [Bouillaguet,
Fouque & Véber, 2013]

S =
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Birthday-based algorithm

» inhomogenous QMLE is solved in polynomial time
> having a collision : y = xS, we can turn a homogenous instance into an

inhomogenous instance
DyP T ' =S D,F
P(x) T~ = F(y)

> Define a distinguishing property for a subset of size .
Build two lists of size \/k.
» Solve the inhomogenous QMLE problem for all k pairs. If there is a solution, then

v

we have found a collision.

» Optimal complexity when /s = g/3(m+n)
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Matrix Code

Linear Code Linear code
Permutation Monomial Result of Equivalence
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» Main result of our work: MCE is equivalent to QMLE

Main result

Quadratic
Maps Linear
Equivalence,

Result of [PGCI8]

» Gives improved upper bound to complexity of solving MCE (w.l.0.g. assume m < n)
e solvable in O*(g?/3(™+") time, when k < n -+ m can be improved to O*(g™)
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MCE as cryptographic group action.

uw:C— D
C— ACB

» 1 can be seen as element (A,B) € GL,(q) x GL,(q)
> [ acts on k-dimensional codes: D = - C
» hence, GL(q) x GL,(q) acts on k-dimensional matrix codes C C My n(Fq).

» one-way: our analysis show that MCE is hard.
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Building crypto from group actions

Cryptographic Group Action: G x X — X

Given x3 and xy, it is hard to find an element g s.t. xo =g - x1

What can we do with it?

» Zero-Knowledge Interactive Proof of knowledge
e Zero-Knowledgness
e soundness
e can be used as identification scheme (IDS)
» Digital Signature via Fiat-Shamir transform
e F-S is a common strategy for PQ signatures
» Dilithium, MQDSS, Picnic in NIST competition
e From cryptographic group actions

» Patarin’s signature, LESS-FM, CSIDH, SeaSign ...
10
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Zero-Knowledge Interactive Proof of knowledge from group actions

Let g be an element s.t. x3 = g - xp.
Given xp, x1, the prover P wants to prove to the verifier V knowledge of g without revealing
any information about it

X0 ’L X! P(X07X17g) V(Xo,Xl)
I
| ’
: com <— X com
g -
! 81 ch ch < {0,1}
U
X1 resp < gch <
_—
;7 ?
X = Bch * Xch
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Matrix Code Equivalence as a cryptographic primitive!

(1
(2
(3
(

4) (mathematically very interesting part of coding theory!)

MCE is “easy to understand”
Complexity linked to well-studied problem in multivariate crypto (IP)
Cryptographic group action: great building block!

)
)
)
)
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