

The Matrix Code Equivalence Problem and Applications

Monika Trimoska (joint work with **Krijn Reijnders** and **Simona Samardjiska**)
Radboud University, Nijmegen

Contemporary algebraic and geometric techniques in coding theory and cryptography
July 21th, 2022

Matrix Code Equivalence (MCE)

The Matrix Code Equivalence Problem

Matrix code \mathcal{C} : a subspace of $\mathcal{M}_{m \times n}(\mathbb{F}_q)$ of dimension k endowed with **rank metric**

$$d(\mathbf{A}, \mathbf{B}) = \text{Rank}(\mathbf{A} - \mathbf{B})$$

The Matrix Code Equivalence Problem

Matrix code \mathcal{C} : a subspace of $\mathcal{M}_{m \times n}(\mathbb{F}_q)$ of dimension k endowed with **rank metric**

$$d(\mathbf{A}, \mathbf{B}) = \text{Rank}(\mathbf{A} - \mathbf{B})$$

Isometry μ : a homomorphism of matrix codes $\mathcal{C} \rightarrow \mathcal{D}$ such that for all $\mathbf{C} \in \mathcal{C}$,

$$\text{Rank } \mathbf{C} = \text{Rank } \mu(\mathbf{C})$$

The Matrix Code Equivalence Problem

Matrix code \mathcal{C} : a subspace of $\mathcal{M}_{m \times n}(\mathbb{F}_q)$ of dimension k endowed with **rank metric**

$$d(\mathbf{A}, \mathbf{B}) = \text{Rank}(\mathbf{A} - \mathbf{B})$$

Isometry μ : a homomorphism of matrix codes $\mathcal{C} \rightarrow \mathcal{D}$ such that for all $\mathbf{C} \in \mathcal{C}$,

$$\text{Rank } \mathbf{C} = \text{Rank } \mu(\mathbf{C})$$

Matrix Code Equivalence (MCE) problem [Berger, 2003]

MCE($k, n, m, \mathcal{C}, \mathcal{D}$):

Input: Two k -dimensional matrix codes $\mathcal{C}, \mathcal{D} \subset \mathcal{M}_{m \times n}(\mathbb{F}_q)$

Question: Find – if any – an isometry $\mu : \mathcal{C} \rightarrow \mathcal{D}$.

The Matrix Code Equivalence Problem

Matrix code \mathcal{C} : a subspace of $\mathcal{M}_{m \times n}(\mathbb{F}_q)$ of dimension k endowed with **rank metric**

$$d(\mathbf{A}, \mathbf{B}) = \text{Rank}(\mathbf{A} - \mathbf{B})$$

Isometry μ : a homomorphism of matrix codes $\mathcal{C} \rightarrow \mathcal{D}$ such that for all $\mathbf{C} \in \mathcal{C}$,

$$\text{Rank } \mathbf{C} = \text{Rank } \mu(\mathbf{C})$$

Matrix Code Equivalence (MCE) problem [Berger, 2003]

MCE($k, n, m, \mathcal{C}, \mathcal{D}$):

Input: Two k -dimensional matrix codes $\mathcal{C}, \mathcal{D} \subset \mathcal{M}_{m \times n}(\mathbb{F}_q)$

Question: Find – if any – an isometry $\mu : \mathcal{C} \rightarrow \mathcal{D}$.

Known: Any isometry $\mu : \mathcal{C} \rightarrow \mathcal{D}$ can be written, for some $\mathbf{A} \in \text{GL}_m(q)$, $\mathbf{B} \in \text{GL}_n(q)$, as

$$\mathbf{C} \mapsto \mathbf{ACB} \in \mathcal{D}$$

$$\mu : \mathbf{C} \mapsto \mathbf{ACB} \in \mathcal{D}, \quad \text{with } \mathbf{A} \in \mathrm{GL}_m(q) \text{ and } \mathbf{B} \in \mathrm{GL}_n(q)$$

- ▶ when $\mathbf{A} = \mathrm{Id}_m$, or $\mathbf{B} = \mathrm{Id}_n$, finding μ is easy (MCRE)

$$\mu : \mathbf{C} \mapsto \mathbf{ACB} \in \mathcal{D}, \quad \text{with } \mathbf{A} \in \mathrm{GL}_m(q) \text{ and } \mathbf{B} \in \mathrm{GL}_n(q)$$

- ▶ when $\mathbf{A} = \mathrm{Id}_m$, or $\mathbf{B} = \mathrm{Id}_n$, finding μ is easy (MCRE)
- ▶ implicit upper bound $\mathcal{O}^*(q^{m^2})$ time: brute force smallest side, then solve MCRE

$$\mu : \mathbf{C} \mapsto \mathbf{ACB} \in \mathcal{D}, \quad \text{with } \mathbf{A} \in \mathrm{GL}_m(q) \text{ and } \mathbf{B} \in \mathrm{GL}_n(q)$$

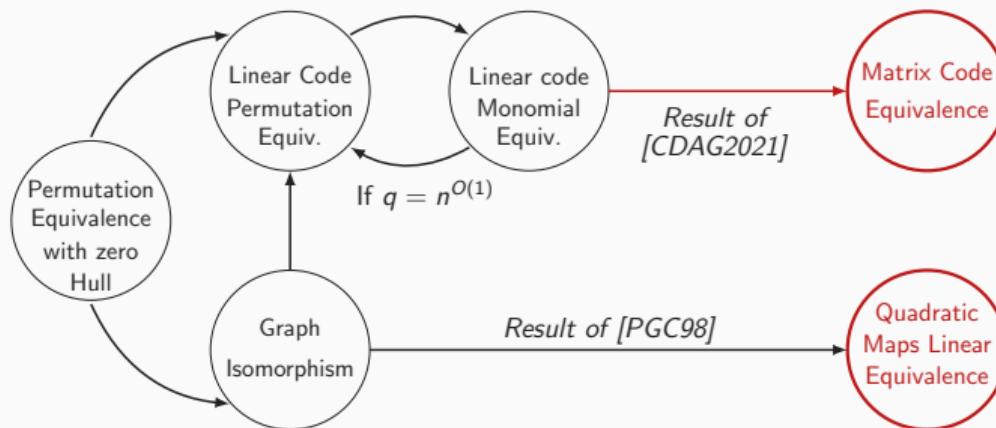
- ▶ when $\mathbf{A} = \mathrm{Id}_m$, or $\mathbf{B} = \mathrm{Id}_n$, finding μ is easy (MCRE)
- ▶ implicit upper bound $\mathcal{O}^*(q^{m^2})$ time: brute force smallest side, then solve MCRE
- ▶ code equivalence for \mathbb{F}_{q^m} -linear codes with rank metric reduces to MCRE

$$\mu : \mathbf{C} \mapsto \mathbf{ACB} \in \mathcal{D}, \quad \text{with } \mathbf{A} \in \mathrm{GL}_m(q) \text{ and } \mathbf{B} \in \mathrm{GL}_n(q)$$

- ▶ when $\mathbf{A} = \mathrm{Id}_m$, or $\mathbf{B} = \mathrm{Id}_n$, finding μ is easy (MCRE)
- ▶ implicit upper bound $\mathcal{O}^*(q^{m^2})$ time: brute force smallest side, then solve MCRE
- ▶ code equivalence for \mathbb{F}_{q^m} -linear codes with rank metric reduces to MCRE
- ▶ MCE is at least as hard as Monomial Equivalence Problem in the Hamming metric

$$\mu : \mathbf{C} \mapsto \mathbf{ACB} \in \mathcal{D}, \quad \text{with } \mathbf{A} \in \mathrm{GL}_m(q) \text{ and } \mathbf{B} \in \mathrm{GL}_n(q)$$

- ▶ when $\mathbf{A} = \mathrm{Id}_m$, or $\mathbf{B} = \mathrm{Id}_n$, finding μ is easy (MCRE)
- ▶ implicit upper bound $\mathcal{O}^*(q^{m^2})$ time: brute force smallest side, then solve MCRE
- ▶ code equivalence for \mathbb{F}_{q^m} -linear codes with rank metric reduces to MCRE
- ▶ MCE is at least as hard as Monomial Equivalence Problem in the Hamming metric



What is QMLE?

- ▶ systems of multivariate polynomials $\mathcal{P} = (p_1, p_2, \dots, p_k)$, every p_s polynomial in N variables x_1, \dots, x_N

- ▶ systems of multivariate polynomials $\mathcal{P} = (p_1, p_2, \dots, p_k)$, every p_s polynomial in N variables x_1, \dots, x_N
- ▶ most interesting when each p_s is at most degree 2

$$p_s(x_1, \dots, x_N) = \sum \gamma_{ij}^{(s)} x_i x_j + \sum \beta_i^{(s)} x_i + \alpha^{(s)}, \quad \alpha^{(s)}, \beta_i^{(s)}, \gamma_{ij}^{(s)} \in \mathbb{F}_q$$

- ▶ systems of multivariate polynomials $\mathcal{P} = (p_1, p_2, \dots, p_k)$, every p_s polynomial in N variables x_1, \dots, x_N
- ▶ most interesting when each p_s is at most degree 2 **and homogeneous**

$$p_s(x_1, \dots, x_N) = \sum \gamma_{ij}^{(s)} x_i x_j \quad \gamma_{ij}^{(s)} \in \mathbb{F}_q$$

- ▶ systems of multivariate polynomials $\mathcal{P} = (p_1, p_2, \dots, p_k)$, every p_s polynomial in N variables x_1, \dots, x_N
- ▶ most interesting when each p_s is at most degree 2 **and homogeneous**

$$p_s(x_1, \dots, x_N) = \sum \gamma_{ij}^{(s)} x_i x_j \quad \gamma_{ij}^{(s)} \in \mathbb{F}_q$$

Quadratic Maps Linear Equivalence (QMLE) problem

QMLE($N, k, \mathcal{F}, \mathcal{P}$):

Input: Two k -tuples of quadratic maps

$$\mathcal{F} = (f_1, f_2, \dots, f_k), \quad \mathcal{P} = (p_1, p_2, \dots, p_k) \in \mathbb{F}_q[x_1, \dots, x_N]^k$$

Question: Find – if any – $\mathbf{S} \in \mathrm{GL}_N(q)$, $\mathbf{T} \in \mathrm{GL}_k(q)$ such that

$$\mathcal{P}(\mathbf{x}) = \mathcal{F}(\mathbf{xS}) \cdot \mathbf{T}$$

$$p_s = \sum \gamma_{ij}^{(s)} x_i x_j = (x_1, \dots, x_N) \underbrace{\begin{pmatrix} \gamma_{11} & \dots & \frac{\gamma_{1N}}{2} \\ \vdots & \ddots & \vdots \\ \frac{\gamma_{N1}}{2} & \dots & \gamma_{NN} \end{pmatrix}}_{\mathbf{P}^{(s)} \in \mathcal{M}_{N \times N}(\mathbb{F}_q)} \begin{pmatrix} x_1 \\ \vdots \\ x_N \end{pmatrix}$$

$$p_s = \sum \gamma_{ij}^{(s)} x_i x_j = (x_1, \dots, x_N) \underbrace{\begin{pmatrix} \gamma_{11} & \dots & \frac{\gamma_{1N}}{2} \\ \vdots & \ddots & \vdots \\ \frac{\gamma_{N1}}{2} & \dots & \gamma_{NN} \end{pmatrix}}_{\mathbf{P}^{(s)} \in \mathcal{M}_{N \times N}(\mathbb{F}_q)} \begin{pmatrix} x_1 \\ \vdots \\ x_N \end{pmatrix}$$

so with $\mathbf{x} = (x_1, \dots, x_N)$, we get $p_s(\mathbf{x}) = \mathbf{x} \mathbf{P}^{(s)} \mathbf{x}^T$

$$p_s = \sum \gamma_{ij}^{(s)} x_i x_j = (x_1, \dots, x_N) \underbrace{\begin{pmatrix} \gamma_{11} & \dots & \frac{\gamma_{1N}}{2} \\ \vdots & \ddots & \vdots \\ \frac{\gamma_{N1}}{2} & \dots & \gamma_{NN} \end{pmatrix}}_{\mathbf{P}^{(s)} \in \mathcal{M}_{N \times N}(\mathbb{F}_q)} \begin{pmatrix} x_1 \\ \vdots \\ x_N \end{pmatrix}$$

so with $\mathbf{x} = (x_1, \dots, x_N)$, we get $p_s(\mathbf{x}) = \mathbf{x} \mathbf{P}^{(s)} \mathbf{x}^T$

so QMLE can be rewritten in matrix form

$$\sum_{1 \leq r \leq k} \tilde{t}_{rs} \mathbf{P}^{(r)} = \mathbf{S} \mathbf{F}^{(s)} \mathbf{S}^\top, \quad \forall s, 1 \leq s \leq k,$$

where \tilde{t}_{ij} are entries of \mathbf{T}^{-1}

- ▶ reduction: an MCE instance $(k, n, m, \mathcal{C}, \mathcal{D})$ results in a QMLE instance $(m + n, k, \mathcal{F}, \mathcal{P})$ with

$$\mathbf{S} = \begin{bmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{0} & \mathbf{B}^\top \end{bmatrix}$$

- ▶ reduction: an MCE instance $(k, n, m, \mathcal{C}, \mathcal{D})$ results in a QMLE instance $(m + n, k, \mathcal{F}, \mathcal{P})$ with

$$\mathbf{S} = \begin{bmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{0} & \mathbf{B}^\top \end{bmatrix}$$

- ▶ solving the instance using a birthday-based algorithm $\mathcal{O}^*(q^{2/3(m+n)})$ [Bouillaguet, Fouque & Véber, 2013]

Birthday-based algorithm

- ▶ inhomogenous QMLE is solved in polynomial time

- ▶ inhomogenous QMLE is solved in polynomial time
- ▶ having a collision : $\mathbf{y} = \mathbf{x}\mathbf{S}$, we can turn a homogenous instance into an inhomogenous instance

$$\begin{aligned} D_{\mathbf{x}} \mathcal{P} \mathbf{T}^{-1} &= \mathbf{S} D_{\mathbf{y}} \mathcal{F} \\ \mathcal{P}(\mathbf{x}) \mathbf{T}^{-1} &= \mathcal{F}(\mathbf{y}) \end{aligned}$$

- ▶ inhomogenous QMLE is solved in polynomial time
- ▶ having a collision : $\mathbf{y} = \mathbf{x}\mathbf{S}$, we can turn a homogenous instance into an inhomogenous instance

$$\begin{aligned} D_{\mathbf{x}} \mathcal{P} \mathbf{T}^{-1} &= \mathbf{S} \quad D_{\mathbf{y}} \mathcal{F} \\ \mathcal{P}(\mathbf{x}) \mathbf{T}^{-1} &= \mathcal{F}(\mathbf{y}) \end{aligned}$$

- ▶ Define a distinguishing property for a subset of size κ .

- ▶ inhomogenous QMLE is solved in polynomial time
- ▶ having a collision : $\mathbf{y} = \mathbf{x}\mathbf{S}$, we can turn a homogenous instance into an inhomogenous instance

$$\begin{aligned} D_{\mathbf{x}} \mathcal{P} \mathbf{T}^{-1} &= \mathbf{S} D_{\mathbf{y}} \mathcal{F} \\ \mathcal{P}(\mathbf{x}) \mathbf{T}^{-1} &= \mathcal{F}(\mathbf{y}) \end{aligned}$$

- ▶ Define a distinguishing property for a subset of size κ .
- ▶ Build two lists of size $\sqrt{\kappa}$.

- ▶ inhomogenous QMLE is solved in polynomial time
- ▶ having a collision : $\mathbf{y} = \mathbf{x}\mathbf{S}$, we can turn a homogenous instance into an inhomogenous instance

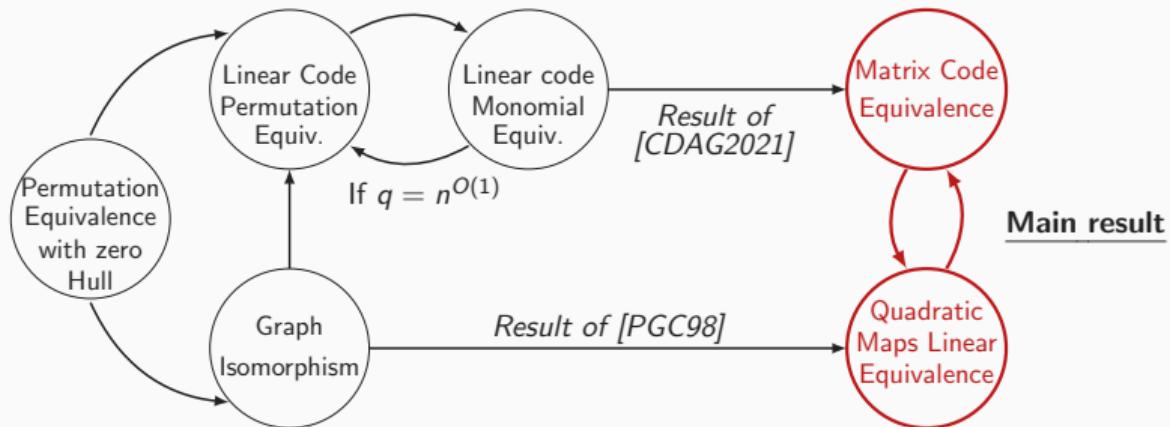
$$\begin{aligned} D_{\mathbf{x}} \mathcal{P} \mathbf{T}^{-1} &= \mathbf{S} D_{\mathbf{y}} \mathcal{F} \\ \mathcal{P}(\mathbf{x}) \mathbf{T}^{-1} &= \mathcal{F}(\mathbf{y}) \end{aligned}$$

- ▶ Define a distinguishing property for a subset of size κ .
- ▶ Build two lists of size $\sqrt{\kappa}$.
- ▶ Solve the inhomogenous QMLE problem for all κ pairs. If there is a solution, then we have found a collision.

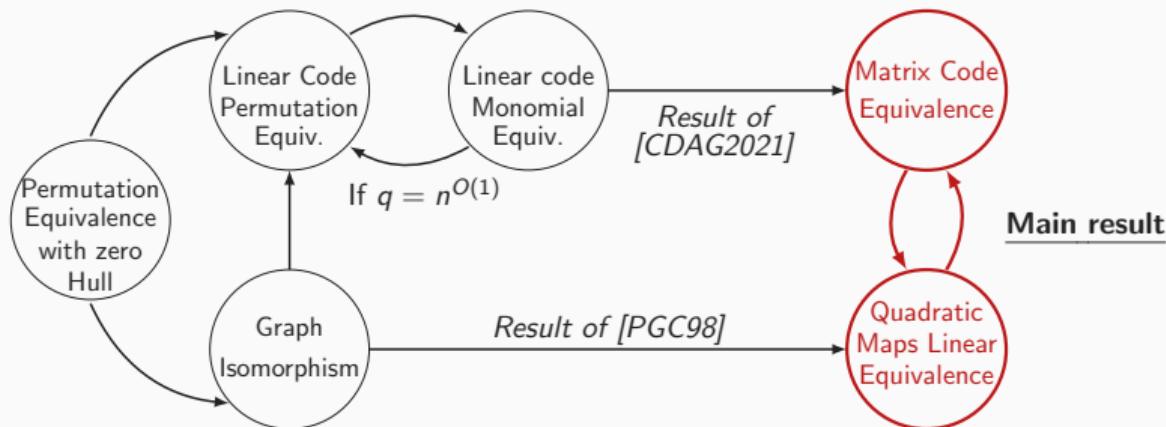
- ▶ inhomogenous QMLE is solved in polynomial time
- ▶ having a collision : $\mathbf{y} = \mathbf{x}\mathbf{S}$, we can turn a homogenous instance into an inhomogenous instance

$$\begin{aligned} D_{\mathbf{x}} \mathcal{P} \mathbf{T}^{-1} &= \mathbf{S} D_{\mathbf{y}} \mathcal{F} \\ \mathcal{P}(\mathbf{x}) \mathbf{T}^{-1} &= \mathcal{F}(\mathbf{y}) \end{aligned}$$

- ▶ Define a distinguishing property for a subset of size κ .
- ▶ Build two lists of size $\sqrt{\kappa}$.
- ▶ Solve the inhomogenous QMLE problem for all κ pairs. If there is a solution, then we have found a collision.
- ▶ Optimal complexity when $\sqrt{\kappa} = q^{1/3(m+n)}$.



- ▶ Main result of our work: **MCE is equivalent to QMLE**



- ▶ Main result of our work: **MCE is equivalent to QMLE**
- ▶ Gives **improved upper bound** to complexity of solving MCE (w.l.o.g. assume $m \leq n$)
 - solvable in $\mathcal{O}^*(q^{2/3(m+n)})$ time, when $k \leq n+m$ can be improved to $\mathcal{O}^*(q^m)$

Matrix code equivalence: a cryptographic group action?

$$\mu : \mathcal{C} \rightarrow \mathcal{D}$$

$$\mathbf{C} \mapsto \mathbf{ACB}$$

- ▶ μ can be seen as element $(\mathbf{A}, \mathbf{B}) \in \mathrm{GL}_m(q) \times \mathrm{GL}_n(q)$

$$\mu : \mathcal{C} \rightarrow \mathcal{D}$$

$$\mathbf{C} \mapsto \mathbf{ACB}$$

- ▶ μ can be seen as element $(\mathbf{A}, \mathbf{B}) \in \mathrm{GL}_m(q) \times \mathrm{GL}_n(q)$
- ▶ μ acts on k -dimensional codes: $\mathcal{D} = \mu \cdot \mathcal{C}$

$$\mu : \mathcal{C} \rightarrow \mathcal{D}$$

$$\mathbf{C} \mapsto \mathbf{ACB}$$

- ▶ μ can be seen as element $(\mathbf{A}, \mathbf{B}) \in \mathrm{GL}_m(q) \times \mathrm{GL}_n(q)$
- ▶ μ acts on k -dimensional codes: $\mathcal{D} = \mu \cdot \mathcal{C}$
- ▶ hence, $\mathrm{GL}_m(q) \times \mathrm{GL}_n(q)$ acts on k -dimensional matrix codes $\mathcal{C} \subset \mathcal{M}_{m \times n}(\mathbb{F}_q)$.

$$\mu : \mathcal{C} \rightarrow \mathcal{D}$$

$$\mathbf{C} \mapsto \mathbf{ACB}$$

- ▶ μ can be seen as element $(\mathbf{A}, \mathbf{B}) \in \mathrm{GL}_m(q) \times \mathrm{GL}_n(q)$
- ▶ μ acts on k -dimensional codes: $\mathcal{D} = \mu \cdot \mathcal{C}$
- ▶ hence, $\mathrm{GL}_m(q) \times \mathrm{GL}_n(q)$ acts on k -dimensional matrix codes $\mathcal{C} \subset \mathcal{M}_{m \times n}(\mathbb{F}_q)$.
- ▶ **one-way**: our analysis show that MCE is **hard**.

Cryptographic Group Action: $G \times X \rightarrow X$

Given x_1 and x_2 , it is **hard** to find an element g s.t. $x_2 = g \cdot x_1$

Cryptographic Group Action: $G \times X \rightarrow X$

Given x_1 and x_2 , it is **hard** to find an element g s.t. $x_2 = g \cdot x_1$

What can we do with it?

Cryptographic Group Action: $G \times X \rightarrow X$

Given x_1 and x_2 , it is **hard** to find an element g s.t. $x_2 = g \cdot x_1$

What can we do with it?

► Zero-Knowledge Interactive Proof of knowledge

- Zero-Knowledgness
- soundness
- can be used as identification scheme (IDS)

Cryptographic Group Action: $G \times X \rightarrow X$

Given x_1 and x_2 , it is **hard** to find an element g s.t. $x_2 = g \cdot x_1$

What can we do with it?

► **Zero-Knowledge Interactive Proof of knowledge**

- Zero-Knowledgness
- soundness
- can be used as identification scheme (IDS)

► **Digital Signature via Fiat-Shamir transform**

- F-S is a common strategy for PQ signatures
 - Dilithium, MQDSS, Picnic in NIST competition
- From cryptographic group actions
 - Patarin's signature, LESS-FM, CSIDH, SeaSign ...

Zero-Knowledge Interactive Proof of knowledge from group actions

Let g be an element s.t. $x_1 = g \cdot x_0$.

Given x_0, x_1 , the prover \mathcal{P} wants to prove to the verifier \mathcal{V} knowledge of g without revealing any information about it

x_0

 g

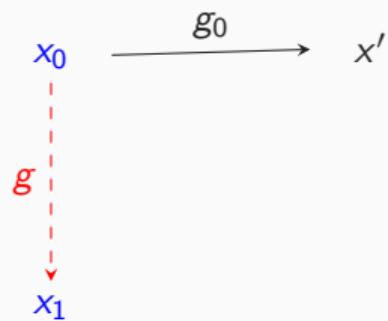
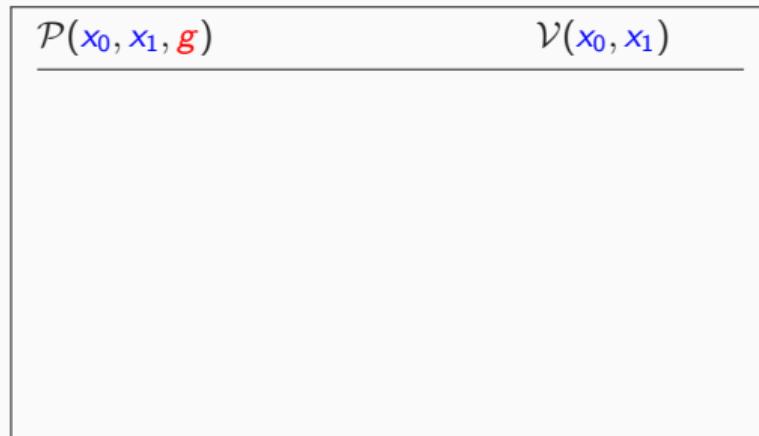
 x_1

$\mathcal{P}(x_0, x_1, g)$	$\mathcal{V}(x_0, x_1)$

Zero-Knowledge Interactive Proof of knowledge from group actions

Let g be an element s.t. $x_1 = g \cdot x_0$.

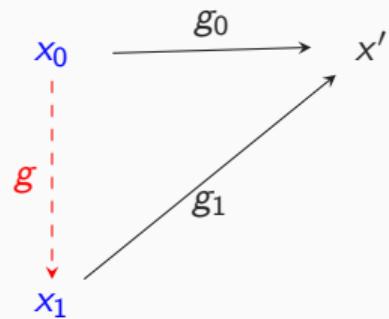
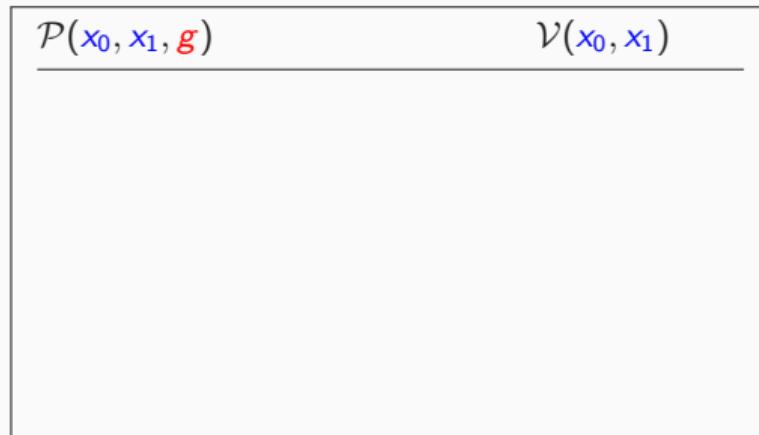
Given x_0, x_1 , the prover \mathcal{P} wants to prove to the verifier \mathcal{V} knowledge of g without revealing any information about it



Zero-Knowledge Interactive Proof of knowledge from group actions

Let g be an element s.t. $x_1 = g \cdot x_0$.

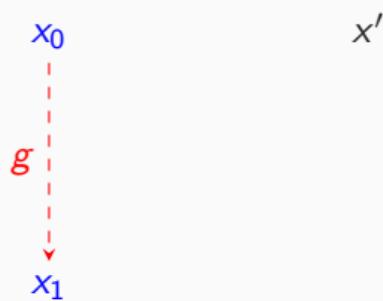
Given x_0, x_1 , the prover \mathcal{P} wants to prove to the verifier \mathcal{V} knowledge of g without revealing any information about it



Zero-Knowledge Interactive Proof of knowledge from group actions

Let g be an element s.t. $x_1 = g \cdot x_0$.

Given x_0, x_1 , the prover \mathcal{P} wants to prove to the verifier \mathcal{V} knowledge of g without revealing any information about it

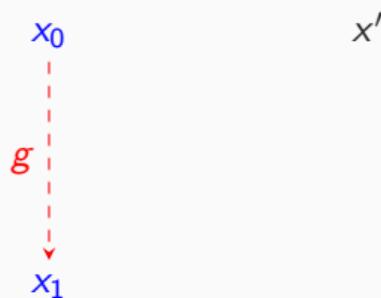
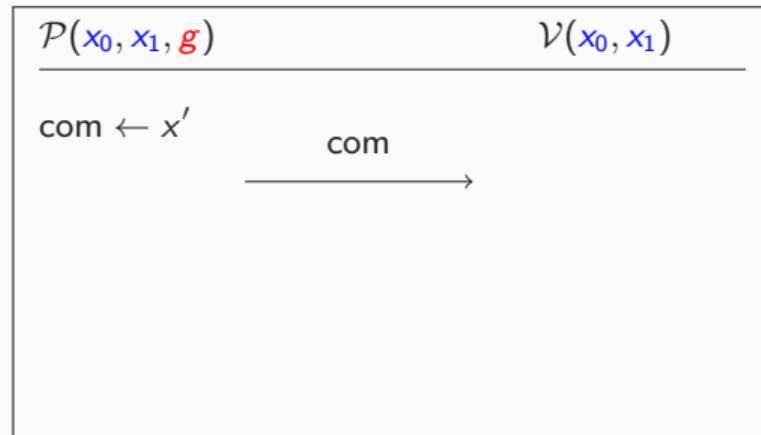


$\mathcal{P}(x_0, x_1, g)$	$\mathcal{V}(x_0, x_1)$
$\text{com} \leftarrow x'$	

Zero-Knowledge Interactive Proof of knowledge from group actions

Let g be an element s.t. $x_1 = g \cdot x_0$.

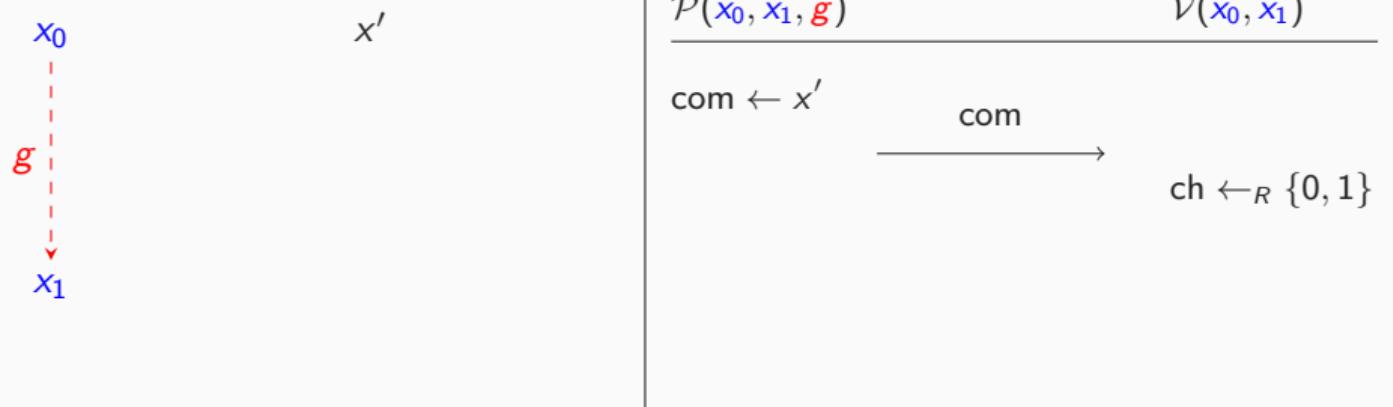
Given x_0, x_1 , the prover \mathcal{P} wants to prove to the verifier \mathcal{V} knowledge of g without revealing any information about it



Zero-Knowledge Interactive Proof of knowledge from group actions

Let g be an element s.t. $x_1 = g \cdot x_0$.

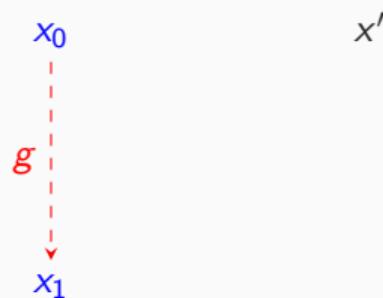
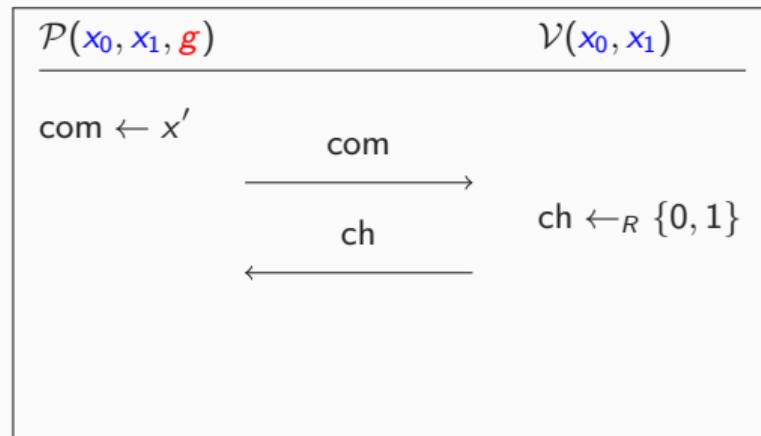
Given x_0, x_1 , the prover \mathcal{P} wants to prove to the verifier \mathcal{V} knowledge of g without revealing any information about it



Zero-Knowledge Interactive Proof of knowledge from group actions

Let g be an element s.t. $x_1 = g \cdot x_0$.

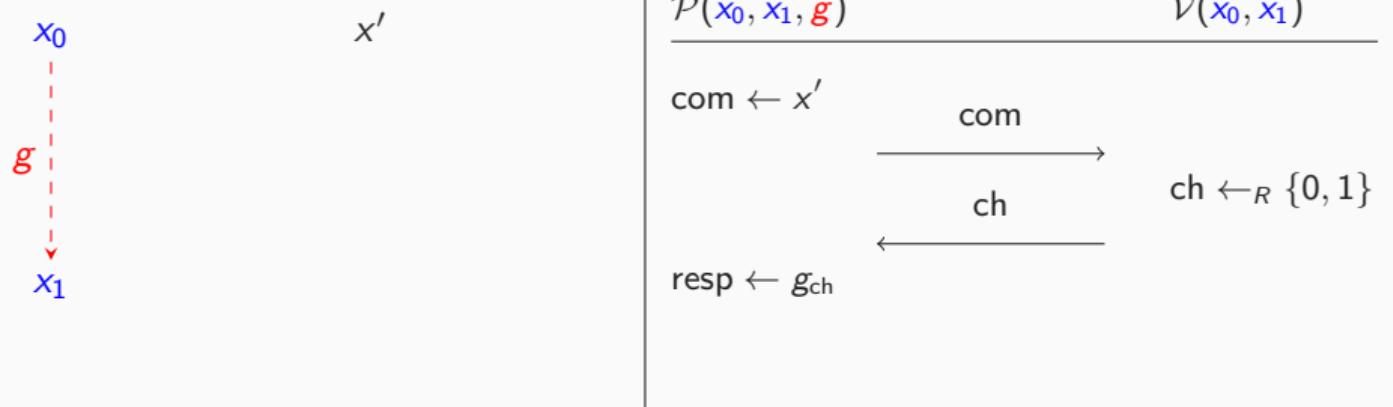
Given x_0, x_1 , the prover \mathcal{P} wants to prove to the verifier \mathcal{V} knowledge of g without revealing any information about it



Zero-Knowledge Interactive Proof of knowledge from group actions

Let g be an element s.t. $x_1 = g \cdot x_0$.

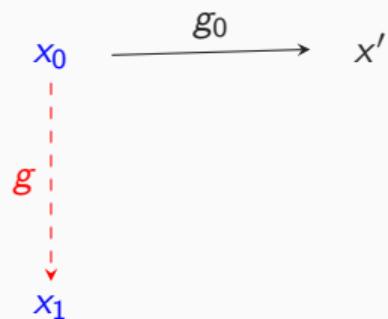
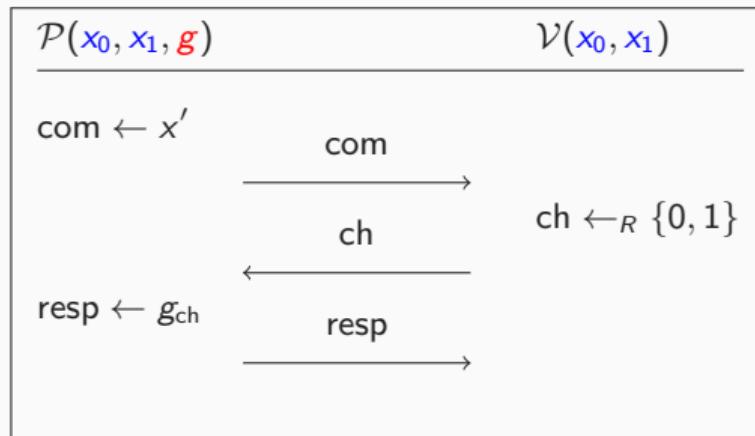
Given x_0, x_1 , the prover \mathcal{P} wants to prove to the verifier \mathcal{V} knowledge of g without revealing any information about it



Zero-Knowledge Interactive Proof of knowledge from group actions

Let g be an element s.t. $x_1 = g \cdot x_0$.

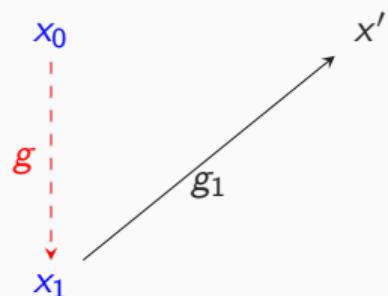
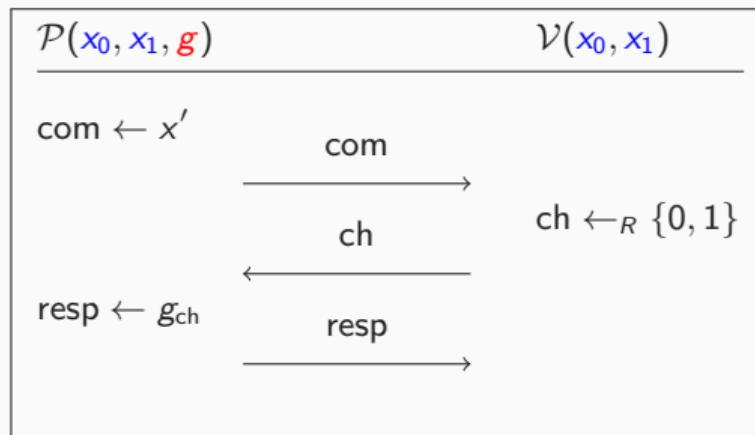
Given x_0, x_1 , the prover \mathcal{P} wants to prove to the verifier \mathcal{V} knowledge of g without revealing any information about it



Zero-Knowledge Interactive Proof of knowledge from group actions

Let g be an element s.t. $x_1 = g \cdot x_0$.

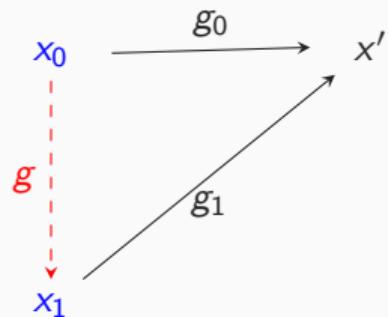
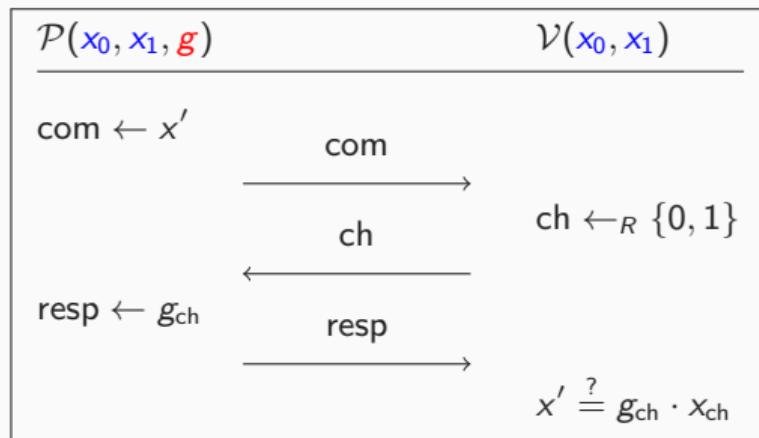
Given x_0, x_1 , the prover \mathcal{P} wants to prove to the verifier \mathcal{V} knowledge of g without revealing any information about it



Zero-Knowledge Interactive Proof of knowledge from group actions

Let g be an element s.t. $x_1 = g \cdot x_0$.

Given x_0, x_1 , the prover \mathcal{P} wants to prove to the verifier \mathcal{V} knowledge of g without revealing any information about it



Matrix Code Equivalence as a cryptographic primitive!

- (1) MCE is “easy to understand”

Matrix Code Equivalence as a cryptographic primitive!

- (1) MCE is “easy to understand”
- (2) Complexity linked to well-studied problem in multivariate crypto (IP)

Matrix Code Equivalence as a cryptographic primitive!

- (1) MCE is “easy to understand”
- (2) Complexity linked to well-studied problem in multivariate crypto (IP)
- (3) Cryptographic group action: great building block!

- (1) MCE is “easy to understand”
- (2) Complexity linked to well-studied problem in multivariate crypto (IP)
- (3) Cryptographic group action: great building block!
- (4) (mathematically very interesting part of coding theory!)