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Matrix Code Equivalence (MCE)



The Matrix Code Equivalence Problem

Matrix code C: a subspace of Mm×n(Fq) of dimension k endowed with rank metric

d(A,B) = Rank(A− B)

Isometry µ: a homomorphism of matrix codes C → D such that for all C ∈ C,

RankC = Rankµ(C)

Matrix Code Equivalence (MCE) problem [Berger, 2003]

MCE(k, n,m, C,D):

Input: Two k-dimensional matrix codes C,D ⊂ Mm×n(Fq)

Question: Find – if any – an isometry µ : C → D.

Known: Any isometry µ : C → D can be written, for some A ∈ GLm(q),B ∈ GLn(q), as

C 7→ ACB ∈ D

2



The Matrix Code Equivalence Problem

Matrix code C: a subspace of Mm×n(Fq) of dimension k endowed with rank metric

d(A,B) = Rank(A− B)

Isometry µ: a homomorphism of matrix codes C → D such that for all C ∈ C,

RankC = Rankµ(C)

Matrix Code Equivalence (MCE) problem [Berger, 2003]

MCE(k, n,m, C,D):

Input: Two k-dimensional matrix codes C,D ⊂ Mm×n(Fq)

Question: Find – if any – an isometry µ : C → D.

Known: Any isometry µ : C → D can be written, for some A ∈ GLm(q),B ∈ GLn(q), as

C 7→ ACB ∈ D

2



The Matrix Code Equivalence Problem

Matrix code C: a subspace of Mm×n(Fq) of dimension k endowed with rank metric

d(A,B) = Rank(A− B)

Isometry µ: a homomorphism of matrix codes C → D such that for all C ∈ C,

RankC = Rankµ(C)

Matrix Code Equivalence (MCE) problem [Berger, 2003]

MCE(k, n,m, C,D):

Input: Two k-dimensional matrix codes C,D ⊂ Mm×n(Fq)

Question: Find – if any – an isometry µ : C → D.

Known: Any isometry µ : C → D can be written, for some A ∈ GLm(q),B ∈ GLn(q), as

C 7→ ACB ∈ D

2



The Matrix Code Equivalence Problem

Matrix code C: a subspace of Mm×n(Fq) of dimension k endowed with rank metric

d(A,B) = Rank(A− B)

Isometry µ: a homomorphism of matrix codes C → D such that for all C ∈ C,

RankC = Rankµ(C)

Matrix Code Equivalence (MCE) problem [Berger, 2003]

MCE(k, n,m, C,D):

Input: Two k-dimensional matrix codes C,D ⊂ Mm×n(Fq)

Question: Find – if any – an isometry µ : C → D.

Known: Any isometry µ : C → D can be written, for some A ∈ GLm(q),B ∈ GLn(q), as

C 7→ ACB ∈ D 2



Known results [Couvreur, Debris–Alazard & Gaborit, 2021]

µ : C 7→ ACB ∈ D, with A ∈ GLm(q) and B ∈ GLn(q)

▶ when A = Idm, or B = Idn, finding µ is easy (MCRE)

▶ implicit upper bound O∗(qm
2

) time: brute force smallest side, then solve MCRE

▶ code equivalence for Fqm -linear codes with rank metric reduces to MCRE

▶ MCE is at least as hard as Monomial Equivalence Problem in the Hamming metric
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What is QMLE?



Multivariate crypto basics

▶ systems of multivariate polynomials P = (p1, p2, . . . , pk), every ps polynomial in N

variables x1, . . . , xN

▶ most interesting when each ps is at most degree 2 and homogeneous

ps(x1, . . . , xN) =
∑

γ
(s)
ij xixj +

∑
β
(s)
i xi + α(s), α(s), β

(s)
i , γ

(s)
ij ∈ Fq

Quadratic Maps Linear Equivalence (QMLE) problem

QMLE(N, k,F ,P):

Input: Two k-tuples of quadratic maps

F = (f1, f2, . . . , fk), P = (p1, p2, . . . , pk) ∈ Fq[x1, . . . , xN ]
k

Question: Find – if any – S ∈ GLN(q),T ∈ GLk(q) such that

P(x) = F(xS) · T
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Quadratic maps

ps =
∑

γ
(s)
ij xixj = (x1, . . . , xN)

γ11 . . . γ1N
2

γN1
2 . . . γNN


︸ ︷︷ ︸

P(s) ∈ MN×N(Fq)

x1
...

xN



so with x = (x1, . . . , xN), we get ps(x) = xP(s)xT

so QMLE can be rewritten in matrix form∑
1⩽r⩽k

t̃rsP
(r) = SF(s)S⊤, ∀s, 1 ⩽ s ⩽ k ,

where t̃ij are entries of T−1
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Solving MCE

▶ reduction: an MCE instance (k , n,m, C,D) results in a QMLE instance

(m + n, k,F ,P) with

S =

[
A 0

0 B⊤

]

▶ solving the instance using a birthday-based algorithm O∗(q2/3(m+n)) [Bouillaguet,

Fouque & Véber, 2013]
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Birthday-based algorithm

▶ inhomogenous QMLE is solved in polynomial time

▶ having a collision : y = xS, we can turn a homogenous instance into an

inhomogenous instance

DxP T−1 = S DyF
P(x) T−1 = F(y)

▶ Define a distinguishing property for a subset of size κ.

▶ Build two lists of size
√
κ.

▶ Solve the inhomogenous QMLE problem for all κ pairs. If there is a solution, then

we have found a collision.

▶ Optimal complexity when
√
κ = q1/3(m+n).
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Main result

▶ Main result of our work: MCE is equivalent to QMLE

▶ Gives improved upper bound to complexity of solving MCE (w.l.o.g. assume m ⩽ n)

• solvable in O∗(q2/3(m+n)) time, when k ⩽ n +m can be improved to O∗(qm)
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Matrix code equivalence:

a cryptographic group action?



MCE as cryptographic group action.

µ : C → D
C 7→ ACB

▶ µ can be seen as element (A,B) ∈ GLm(q)× GLn(q)

▶ µ acts on k-dimensional codes: D = µ · C
▶ hence, GLm(q)× GLn(q) acts on k-dimensional matrix codes C ⊂ Mm×n(Fq).

▶ one-way: our analysis show that MCE is hard.
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Building crypto from group actions

Cryptographic Group Action: G × X → X

Given x1 and x2, it is hard to find an element g s.t. x2 = g · x1

What can we do with it?

▶ Zero-Knowledge Interactive Proof of knowledge
• Zero-Knowledgness

• soundness

• can be used as identification scheme (IDS)

▶ Digital Signature via Fiat-Shamir transform

• F-S is a common strategy for PQ signatures
▶ Dilithium, MQDSS, Picnic in NIST competition

• From cryptographic group actions
▶ Patarin’s signature, LESS-FM, CSIDH, SeaSign . . .
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Zero-Knowledge Interactive Proof of knowledge from group actions

Let g be an element s.t. x1 = g · x0.
Given x0, x1, the prover P wants to prove to the verifier V knowledge of g without revealing

any information about it

x0 x ′

x1

g

g0

g1

P(x0, x1, g) V(x0, x1)

com← x ′
com

ch←R {0, 1}ch

resp← gch resp

x ′ ?
= gch · xch
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Matrix Code Equivalence as a cryptographic primitive!

(1) MCE is “easy to understand”

(2) Complexity linked to well-studied problem in multivariate crypto (IP)

(3) Cryptographic group action: great building block!

(4) (mathematically very interesting part of coding theory!)
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