
The Matrix Code Equivalence Problem and Applications

Monika Trimoska (joint work with Krijn Reijnders and Simona Samardjiska)

Radboud University, Nijmegen

Contemporary algebraic and geometric techniques in coding theory and cryptography

July 21th, 2022

1

Matrix Code Equivalence (MCE)

The Matrix Code Equivalence Problem

Matrix code C: a subspace of Mm×n(Fq) of dimension k endowed with rank metric

d(A,B) = Rank(A− B)

Isometry µ: a homomorphism of matrix codes C → D such that for all C ∈ C,

RankC = Rankµ(C)

Matrix Code Equivalence (MCE) problem [Berger, 2003]

MCE(k, n,m, C,D):

Input: Two k-dimensional matrix codes C,D ⊂ Mm×n(Fq)

Question: Find – if any – an isometry µ : C → D.

Known: Any isometry µ : C → D can be written, for some A ∈ GLm(q),B ∈ GLn(q), as

C 7→ ACB ∈ D

2

The Matrix Code Equivalence Problem

Matrix code C: a subspace of Mm×n(Fq) of dimension k endowed with rank metric

d(A,B) = Rank(A− B)

Isometry µ: a homomorphism of matrix codes C → D such that for all C ∈ C,

RankC = Rankµ(C)

Matrix Code Equivalence (MCE) problem [Berger, 2003]

MCE(k, n,m, C,D):

Input: Two k-dimensional matrix codes C,D ⊂ Mm×n(Fq)

Question: Find – if any – an isometry µ : C → D.

Known: Any isometry µ : C → D can be written, for some A ∈ GLm(q),B ∈ GLn(q), as

C 7→ ACB ∈ D

2

The Matrix Code Equivalence Problem

Matrix code C: a subspace of Mm×n(Fq) of dimension k endowed with rank metric

d(A,B) = Rank(A− B)

Isometry µ: a homomorphism of matrix codes C → D such that for all C ∈ C,

RankC = Rankµ(C)

Matrix Code Equivalence (MCE) problem [Berger, 2003]

MCE(k, n,m, C,D):

Input: Two k-dimensional matrix codes C,D ⊂ Mm×n(Fq)

Question: Find – if any – an isometry µ : C → D.

Known: Any isometry µ : C → D can be written, for some A ∈ GLm(q),B ∈ GLn(q), as

C 7→ ACB ∈ D

2

The Matrix Code Equivalence Problem

Matrix code C: a subspace of Mm×n(Fq) of dimension k endowed with rank metric

d(A,B) = Rank(A− B)

Isometry µ: a homomorphism of matrix codes C → D such that for all C ∈ C,

RankC = Rankµ(C)

Matrix Code Equivalence (MCE) problem [Berger, 2003]

MCE(k, n,m, C,D):

Input: Two k-dimensional matrix codes C,D ⊂ Mm×n(Fq)

Question: Find – if any – an isometry µ : C → D.

Known: Any isometry µ : C → D can be written, for some A ∈ GLm(q),B ∈ GLn(q), as

C 7→ ACB ∈ D 2

Known results [Couvreur, Debris–Alazard & Gaborit, 2021]

µ : C 7→ ACB ∈ D, with A ∈ GLm(q) and B ∈ GLn(q)

▶ when A = Idm, or B = Idn, finding µ is easy (MCRE)

▶ implicit upper bound O∗(qm
2

) time: brute force smallest side, then solve MCRE

▶ code equivalence for Fqm -linear codes with rank metric reduces to MCRE

▶ MCE is at least as hard as Monomial Equivalence Problem in the Hamming metric

Linear Code

Permutation
Equiv.

Graph

Isomorphism

Permutation
Equivalence

with zero

Hull

Linear code

Monomial
Equiv.

If q = nO(1)

Matrix Code

EquivalenceResult of
[CDAG2021]

Quadratic
Maps Linear

Equivalence

Result of [PGC98]

3

Known results [Couvreur, Debris–Alazard & Gaborit, 2021]

µ : C 7→ ACB ∈ D, with A ∈ GLm(q) and B ∈ GLn(q)

▶ when A = Idm, or B = Idn, finding µ is easy (MCRE)

▶ implicit upper bound O∗(qm
2

) time: brute force smallest side, then solve MCRE

▶ code equivalence for Fqm -linear codes with rank metric reduces to MCRE

▶ MCE is at least as hard as Monomial Equivalence Problem in the Hamming metric

Linear Code

Permutation
Equiv.

Graph

Isomorphism

Permutation
Equivalence

with zero

Hull

Linear code

Monomial
Equiv.

If q = nO(1)

Matrix Code

EquivalenceResult of
[CDAG2021]

Quadratic
Maps Linear

Equivalence

Result of [PGC98]

3

Known results [Couvreur, Debris–Alazard & Gaborit, 2021]

µ : C 7→ ACB ∈ D, with A ∈ GLm(q) and B ∈ GLn(q)

▶ when A = Idm, or B = Idn, finding µ is easy (MCRE)

▶ implicit upper bound O∗(qm
2

) time: brute force smallest side, then solve MCRE

▶ code equivalence for Fqm -linear codes with rank metric reduces to MCRE

▶ MCE is at least as hard as Monomial Equivalence Problem in the Hamming metric

Linear Code

Permutation
Equiv.

Graph

Isomorphism

Permutation
Equivalence

with zero

Hull

Linear code

Monomial
Equiv.

If q = nO(1)

Matrix Code

EquivalenceResult of
[CDAG2021]

Quadratic
Maps Linear

Equivalence

Result of [PGC98]

3

Known results [Couvreur, Debris–Alazard & Gaborit, 2021]

µ : C 7→ ACB ∈ D, with A ∈ GLm(q) and B ∈ GLn(q)

▶ when A = Idm, or B = Idn, finding µ is easy (MCRE)

▶ implicit upper bound O∗(qm
2

) time: brute force smallest side, then solve MCRE

▶ code equivalence for Fqm -linear codes with rank metric reduces to MCRE

▶ MCE is at least as hard as Monomial Equivalence Problem in the Hamming metric

Linear Code

Permutation
Equiv.

Graph

Isomorphism

Permutation
Equivalence

with zero

Hull

Linear code

Monomial
Equiv.

If q = nO(1)

Matrix Code

EquivalenceResult of
[CDAG2021]

Quadratic
Maps Linear

Equivalence

Result of [PGC98]

3

Known results [Couvreur, Debris–Alazard & Gaborit, 2021]

µ : C 7→ ACB ∈ D, with A ∈ GLm(q) and B ∈ GLn(q)

▶ when A = Idm, or B = Idn, finding µ is easy (MCRE)

▶ implicit upper bound O∗(qm
2

) time: brute force smallest side, then solve MCRE

▶ code equivalence for Fqm -linear codes with rank metric reduces to MCRE

▶ MCE is at least as hard as Monomial Equivalence Problem in the Hamming metric

Linear Code

Permutation
Equiv.

Graph

Isomorphism

Permutation
Equivalence

with zero

Hull

Linear code

Monomial
Equiv.

If q = nO(1)

Matrix Code

EquivalenceResult of
[CDAG2021]

Quadratic
Maps Linear

Equivalence

Result of [PGC98]

3

What is QMLE?

Multivariate crypto basics

▶ systems of multivariate polynomials P = (p1, p2, . . . , pk), every ps polynomial in N

variables x1, . . . , xN

▶ most interesting when each ps is at most degree 2 and homogeneous

ps(x1, . . . , xN) =
∑

γ
(s)
ij xixj +

∑
β
(s)
i xi + α(s), α(s), β

(s)
i , γ

(s)
ij ∈ Fq

Quadratic Maps Linear Equivalence (QMLE) problem

QMLE(N, k,F ,P):

Input: Two k-tuples of quadratic maps

F = (f1, f2, . . . , fk), P = (p1, p2, . . . , pk) ∈ Fq[x1, . . . , xN]
k

Question: Find – if any – S ∈ GLN(q),T ∈ GLk(q) such that

P(x) = F(xS) · T

4

Multivariate crypto basics

▶ systems of multivariate polynomials P = (p1, p2, . . . , pk), every ps polynomial in N

variables x1, . . . , xN

▶ most interesting when each ps is at most degree 2

and homogeneous

ps(x1, . . . , xN) =
∑

γ
(s)
ij xixj +

∑
β
(s)
i xi + α(s), α(s), β

(s)
i , γ

(s)
ij ∈ Fq

Quadratic Maps Linear Equivalence (QMLE) problem

QMLE(N, k,F ,P):

Input: Two k-tuples of quadratic maps

F = (f1, f2, . . . , fk), P = (p1, p2, . . . , pk) ∈ Fq[x1, . . . , xN]
k

Question: Find – if any – S ∈ GLN(q),T ∈ GLk(q) such that

P(x) = F(xS) · T

4

Multivariate crypto basics

▶ systems of multivariate polynomials P = (p1, p2, . . . , pk), every ps polynomial in N

variables x1, . . . , xN

▶ most interesting when each ps is at most degree 2 and homogeneous

ps(x1, . . . , xN) =
∑

γ
(s)
ij xixj

+
∑

β
(s)
i xi + α(s), α(s), β

(s)
i ,

γ
(s)
ij ∈ Fq

Quadratic Maps Linear Equivalence (QMLE) problem

QMLE(N, k,F ,P):

Input: Two k-tuples of quadratic maps

F = (f1, f2, . . . , fk), P = (p1, p2, . . . , pk) ∈ Fq[x1, . . . , xN]
k

Question: Find – if any – S ∈ GLN(q),T ∈ GLk(q) such that

P(x) = F(xS) · T

4

Multivariate crypto basics

▶ systems of multivariate polynomials P = (p1, p2, . . . , pk), every ps polynomial in N

variables x1, . . . , xN

▶ most interesting when each ps is at most degree 2 and homogeneous

ps(x1, . . . , xN) =
∑

γ
(s)
ij xixj

+
∑

β
(s)
i xi + α(s), α(s), β

(s)
i ,

γ
(s)
ij ∈ Fq

Quadratic Maps Linear Equivalence (QMLE) problem

QMLE(N, k ,F ,P):

Input: Two k-tuples of quadratic maps

F = (f1, f2, . . . , fk), P = (p1, p2, . . . , pk) ∈ Fq[x1, . . . , xN]
k

Question: Find – if any – S ∈ GLN(q),T ∈ GLk(q) such that

P(x) = F(xS) · T

4

Quadratic maps

ps =
∑

γ
(s)
ij xixj = (x1, . . . , xN)

γ11 . . . γ1N
2

γN1
2 . . . γNN


︸ ︷︷ ︸

P(s) ∈ MN×N(Fq)

x1
...

xN



so with x = (x1, . . . , xN), we get ps(x) = xP(s)xT

so QMLE can be rewritten in matrix form∑
1⩽r⩽k

t̃rsP
(r) = SF(s)S⊤, ∀s, 1 ⩽ s ⩽ k ,

where t̃ij are entries of T−1

5

Quadratic maps

ps =
∑

γ
(s)
ij xixj = (x1, . . . , xN)

γ11 . . . γ1N
2

γN1
2 . . . γNN


︸ ︷︷ ︸

P(s) ∈ MN×N(Fq)

x1
...

xN



so with x = (x1, . . . , xN), we get ps(x) = xP(s)xT

so QMLE can be rewritten in matrix form∑
1⩽r⩽k

t̃rsP
(r) = SF(s)S⊤, ∀s, 1 ⩽ s ⩽ k ,

where t̃ij are entries of T−1

5

Quadratic maps

ps =
∑

γ
(s)
ij xixj = (x1, . . . , xN)

γ11 . . . γ1N
2

γN1
2 . . . γNN


︸ ︷︷ ︸

P(s) ∈ MN×N(Fq)

x1
...

xN



so with x = (x1, . . . , xN), we get ps(x) = xP(s)xT

so QMLE can be rewritten in matrix form∑
1⩽r⩽k

t̃rsP
(r) = SF(s)S⊤, ∀s, 1 ⩽ s ⩽ k ,

where t̃ij are entries of T−1

5

Solving MCE

▶ reduction: an MCE instance (k , n,m, C,D) results in a QMLE instance

(m + n, k,F ,P) with

S =

[
A 0

0 B⊤

]

▶ solving the instance using a birthday-based algorithm O∗(q2/3(m+n)) [Bouillaguet,

Fouque & Véber, 2013]

6

Solving MCE

▶ reduction: an MCE instance (k , n,m, C,D) results in a QMLE instance

(m + n, k,F ,P) with

S =

[
A 0

0 B⊤

]
▶ solving the instance using a birthday-based algorithm O∗(q2/3(m+n)) [Bouillaguet,

Fouque & Véber, 2013]

6

Birthday-based algorithm

▶ inhomogenous QMLE is solved in polynomial time

▶ having a collision : y = xS, we can turn a homogenous instance into an

inhomogenous instance

DxP T−1 = S DyF
P(x) T−1 = F(y)

▶ Define a distinguishing property for a subset of size κ.

▶ Build two lists of size
√
κ.

▶ Solve the inhomogenous QMLE problem for all κ pairs. If there is a solution, then

we have found a collision.

▶ Optimal complexity when
√
κ = q1/3(m+n).

7

Birthday-based algorithm

▶ inhomogenous QMLE is solved in polynomial time

▶ having a collision : y = xS, we can turn a homogenous instance into an

inhomogenous instance

DxP T−1 = S DyF
P(x) T−1 = F(y)

▶ Define a distinguishing property for a subset of size κ.

▶ Build two lists of size
√
κ.

▶ Solve the inhomogenous QMLE problem for all κ pairs. If there is a solution, then

we have found a collision.

▶ Optimal complexity when
√
κ = q1/3(m+n).

7

Birthday-based algorithm

▶ inhomogenous QMLE is solved in polynomial time

▶ having a collision : y = xS, we can turn a homogenous instance into an

inhomogenous instance

DxP T−1 = S DyF
P(x) T−1 = F(y)

▶ Define a distinguishing property for a subset of size κ.

▶ Build two lists of size
√
κ.

▶ Solve the inhomogenous QMLE problem for all κ pairs. If there is a solution, then

we have found a collision.

▶ Optimal complexity when
√
κ = q1/3(m+n).

7

Birthday-based algorithm

▶ inhomogenous QMLE is solved in polynomial time

▶ having a collision : y = xS, we can turn a homogenous instance into an

inhomogenous instance

DxP T−1 = S DyF
P(x) T−1 = F(y)

▶ Define a distinguishing property for a subset of size κ.

▶ Build two lists of size
√
κ.

▶ Solve the inhomogenous QMLE problem for all κ pairs. If there is a solution, then

we have found a collision.

▶ Optimal complexity when
√
κ = q1/3(m+n).

7

Birthday-based algorithm

▶ inhomogenous QMLE is solved in polynomial time

▶ having a collision : y = xS, we can turn a homogenous instance into an

inhomogenous instance

DxP T−1 = S DyF
P(x) T−1 = F(y)

▶ Define a distinguishing property for a subset of size κ.

▶ Build two lists of size
√
κ.

▶ Solve the inhomogenous QMLE problem for all κ pairs. If there is a solution, then

we have found a collision.

▶ Optimal complexity when
√
κ = q1/3(m+n).

7

Birthday-based algorithm

▶ inhomogenous QMLE is solved in polynomial time

▶ having a collision : y = xS, we can turn a homogenous instance into an

inhomogenous instance

DxP T−1 = S DyF
P(x) T−1 = F(y)

▶ Define a distinguishing property for a subset of size κ.

▶ Build two lists of size
√
κ.

▶ Solve the inhomogenous QMLE problem for all κ pairs. If there is a solution, then

we have found a collision.

▶ Optimal complexity when
√
κ = q1/3(m+n).

7

Takeaway

Linear Code
Permutation

Equiv.

Graph

Isomorphism

Permutation
Equivalence
with zero

Hull

Linear code
Monomial
Equiv.

If q = nO(1)

Matrix Code

EquivalenceResult of
[CDAG2021]

Quadratic
Maps Linear
Equivalence

Result of [PGC98]

Main result

▶ Main result of our work: MCE is equivalent to QMLE

▶ Gives improved upper bound to complexity of solving MCE (w.l.o.g. assume m ⩽ n)

• solvable in O∗(q2/3(m+n)) time, when k ⩽ n +m can be improved to O∗(qm)

8

Takeaway

Linear Code
Permutation

Equiv.

Graph

Isomorphism

Permutation
Equivalence
with zero

Hull

Linear code
Monomial
Equiv.

If q = nO(1)

Matrix Code

EquivalenceResult of
[CDAG2021]

Quadratic
Maps Linear
Equivalence

Result of [PGC98]

Main result

▶ Main result of our work: MCE is equivalent to QMLE

▶ Gives improved upper bound to complexity of solving MCE (w.l.o.g. assume m ⩽ n)

• solvable in O∗(q2/3(m+n)) time, when k ⩽ n +m can be improved to O∗(qm)

8

Matrix code equivalence:

a cryptographic group action?

MCE as cryptographic group action.

µ : C → D
C 7→ ACB

▶ µ can be seen as element (A,B) ∈ GLm(q)× GLn(q)

▶ µ acts on k-dimensional codes: D = µ · C
▶ hence, GLm(q)× GLn(q) acts on k-dimensional matrix codes C ⊂ Mm×n(Fq).

▶ one-way: our analysis show that MCE is hard.

9

MCE as cryptographic group action.

µ : C → D
C 7→ ACB

▶ µ can be seen as element (A,B) ∈ GLm(q)× GLn(q)

▶ µ acts on k-dimensional codes: D = µ · C

▶ hence, GLm(q)× GLn(q) acts on k-dimensional matrix codes C ⊂ Mm×n(Fq).

▶ one-way: our analysis show that MCE is hard.

9

MCE as cryptographic group action.

µ : C → D
C 7→ ACB

▶ µ can be seen as element (A,B) ∈ GLm(q)× GLn(q)

▶ µ acts on k-dimensional codes: D = µ · C
▶ hence, GLm(q)× GLn(q) acts on k-dimensional matrix codes C ⊂ Mm×n(Fq).

▶ one-way: our analysis show that MCE is hard.

9

MCE as cryptographic group action.

µ : C → D
C 7→ ACB

▶ µ can be seen as element (A,B) ∈ GLm(q)× GLn(q)

▶ µ acts on k-dimensional codes: D = µ · C
▶ hence, GLm(q)× GLn(q) acts on k-dimensional matrix codes C ⊂ Mm×n(Fq).

▶ one-way: our analysis show that MCE is hard.

9

Building crypto from group actions

Cryptographic Group Action: G × X → X

Given x1 and x2, it is hard to find an element g s.t. x2 = g · x1

What can we do with it?

▶ Zero-Knowledge Interactive Proof of knowledge
• Zero-Knowledgness

• soundness

• can be used as identification scheme (IDS)

▶ Digital Signature via Fiat-Shamir transform

• F-S is a common strategy for PQ signatures
▶ Dilithium, MQDSS, Picnic in NIST competition

• From cryptographic group actions
▶ Patarin’s signature, LESS-FM, CSIDH, SeaSign . . .

10

Building crypto from group actions

Cryptographic Group Action: G × X → X

Given x1 and x2, it is hard to find an element g s.t. x2 = g · x1

What can we do with it?

▶ Zero-Knowledge Interactive Proof of knowledge
• Zero-Knowledgness

• soundness

• can be used as identification scheme (IDS)

▶ Digital Signature via Fiat-Shamir transform

• F-S is a common strategy for PQ signatures
▶ Dilithium, MQDSS, Picnic in NIST competition

• From cryptographic group actions
▶ Patarin’s signature, LESS-FM, CSIDH, SeaSign . . .

10

Building crypto from group actions

Cryptographic Group Action: G × X → X

Given x1 and x2, it is hard to find an element g s.t. x2 = g · x1

What can we do with it?

▶ Zero-Knowledge Interactive Proof of knowledge
• Zero-Knowledgness

• soundness

• can be used as identification scheme (IDS)

▶ Digital Signature via Fiat-Shamir transform

• F-S is a common strategy for PQ signatures
▶ Dilithium, MQDSS, Picnic in NIST competition

• From cryptographic group actions
▶ Patarin’s signature, LESS-FM, CSIDH, SeaSign . . .

10

Building crypto from group actions

Cryptographic Group Action: G × X → X

Given x1 and x2, it is hard to find an element g s.t. x2 = g · x1

What can we do with it?

▶ Zero-Knowledge Interactive Proof of knowledge
• Zero-Knowledgness

• soundness

• can be used as identification scheme (IDS)

▶ Digital Signature via Fiat-Shamir transform

• F-S is a common strategy for PQ signatures
▶ Dilithium, MQDSS, Picnic in NIST competition

• From cryptographic group actions
▶ Patarin’s signature, LESS-FM, CSIDH, SeaSign . . .

10

Zero-Knowledge Interactive Proof of knowledge from group actions

Let g be an element s.t. x1 = g · x0.
Given x0, x1, the prover P wants to prove to the verifier V knowledge of g without revealing

any information about it

x0 x ′

x1

g

g0

g1

P(x0, x1, g) V(x0, x1)

com← x ′
com

ch←R {0, 1}ch

resp← gch resp

x ′ ?
= gch · xch

11

Zero-Knowledge Interactive Proof of knowledge from group actions

Let g be an element s.t. x1 = g · x0.
Given x0, x1, the prover P wants to prove to the verifier V knowledge of g without revealing

any information about it

x0 x ′

x1

g

g0

g1

P(x0, x1, g) V(x0, x1)

com← x ′
com

ch←R {0, 1}ch

resp← gch resp

x ′ ?
= gch · xch

11

Zero-Knowledge Interactive Proof of knowledge from group actions

Let g be an element s.t. x1 = g · x0.
Given x0, x1, the prover P wants to prove to the verifier V knowledge of g without revealing

any information about it

x0 x ′

x1

g

g0

g1

P(x0, x1, g) V(x0, x1)

com← x ′
com

ch←R {0, 1}ch

resp← gch resp

x ′ ?
= gch · xch

11

Zero-Knowledge Interactive Proof of knowledge from group actions

Let g be an element s.t. x1 = g · x0.
Given x0, x1, the prover P wants to prove to the verifier V knowledge of g without revealing

any information about it

x0 x ′

x1

g

g0

g1

P(x0, x1, g) V(x0, x1)

com← x ′

com

ch←R {0, 1}ch

resp← gch resp

x ′ ?
= gch · xch

11

Zero-Knowledge Interactive Proof of knowledge from group actions

Let g be an element s.t. x1 = g · x0.
Given x0, x1, the prover P wants to prove to the verifier V knowledge of g without revealing

any information about it

x0 x ′

x1

g

g0

g1

P(x0, x1, g) V(x0, x1)

com← x ′
com

ch←R {0, 1}ch

resp← gch resp

x ′ ?
= gch · xch

11

Zero-Knowledge Interactive Proof of knowledge from group actions

Let g be an element s.t. x1 = g · x0.
Given x0, x1, the prover P wants to prove to the verifier V knowledge of g without revealing

any information about it

x0 x ′

x1

g

g0

g1

P(x0, x1, g) V(x0, x1)

com← x ′
com

ch←R {0, 1}

ch

resp← gch resp

x ′ ?
= gch · xch

11

Zero-Knowledge Interactive Proof of knowledge from group actions

Let g be an element s.t. x1 = g · x0.
Given x0, x1, the prover P wants to prove to the verifier V knowledge of g without revealing

any information about it

x0 x ′

x1

g

g0

g1

P(x0, x1, g) V(x0, x1)

com← x ′
com

ch←R {0, 1}ch

resp← gch resp

x ′ ?
= gch · xch

11

Zero-Knowledge Interactive Proof of knowledge from group actions

Let g be an element s.t. x1 = g · x0.
Given x0, x1, the prover P wants to prove to the verifier V knowledge of g without revealing

any information about it

x0 x ′

x1

g

g0

g1

P(x0, x1, g) V(x0, x1)

com← x ′
com

ch←R {0, 1}ch

resp← gch

resp

x ′ ?
= gch · xch

11

Zero-Knowledge Interactive Proof of knowledge from group actions

Let g be an element s.t. x1 = g · x0.
Given x0, x1, the prover P wants to prove to the verifier V knowledge of g without revealing

any information about it

x0 x ′

x1

g

g0

g1

P(x0, x1, g) V(x0, x1)

com← x ′
com

ch←R {0, 1}ch

resp← gch resp

x ′ ?
= gch · xch

11

Zero-Knowledge Interactive Proof of knowledge from group actions

Let g be an element s.t. x1 = g · x0.
Given x0, x1, the prover P wants to prove to the verifier V knowledge of g without revealing

any information about it

x0 x ′

x1

g

g0

g1

P(x0, x1, g) V(x0, x1)

com← x ′
com

ch←R {0, 1}ch

resp← gch resp

x ′ ?
= gch · xch

11

Zero-Knowledge Interactive Proof of knowledge from group actions

Let g be an element s.t. x1 = g · x0.
Given x0, x1, the prover P wants to prove to the verifier V knowledge of g without revealing

any information about it

x0 x ′

x1

g

g0

g1

P(x0, x1, g) V(x0, x1)

com← x ′
com

ch←R {0, 1}ch

resp← gch resp

x ′ ?
= gch · xch

11

Matrix Code Equivalence as a cryptographic primitive!

(1) MCE is “easy to understand”

(2) Complexity linked to well-studied problem in multivariate crypto (IP)

(3) Cryptographic group action: great building block!

(4) (mathematically very interesting part of coding theory!)

12

Matrix Code Equivalence as a cryptographic primitive!

(1) MCE is “easy to understand”

(2) Complexity linked to well-studied problem in multivariate crypto (IP)

(3) Cryptographic group action: great building block!

(4) (mathematically very interesting part of coding theory!)

12

Matrix Code Equivalence as a cryptographic primitive!

(1) MCE is “easy to understand”

(2) Complexity linked to well-studied problem in multivariate crypto (IP)

(3) Cryptographic group action: great building block!

(4) (mathematically very interesting part of coding theory!)

12

Matrix Code Equivalence as a cryptographic primitive!

(1) MCE is “easy to understand”

(2) Complexity linked to well-studied problem in multivariate crypto (IP)

(3) Cryptographic group action: great building block!

(4) (mathematically very interesting part of coding theory!)

12

	Matrix Code Equivalence (MCE)
	What is QMLE?
	Matrix code equivalence: a cryptographic group action?

