
Algebraic cryptanalysis and multivariate
cryptography

PQSCA summer school
June 17, Albena, Bulgaria

Monika Trimoska

*Animated version at: https://mtrimoska.com/slides/PQCSA_cryptanalysis/

https://mtrimoska.com/slides/PQCSA_cryptanalysis/

2

Algebraic cryptanalysis

A type of cryptanalytic methods where the problem of finding the secret key
(or any attack goal) is reduced to the problem of finding a solution to a
nonlinear multivariate polynomial system of equations.

3

Algebraic cryptanalysis

secret key

or

forgery

public key

message

multivariate
signature
scheme

x1 + x2 + 1 = 0
x1x3 + x4 = 0

algebraic modeling MQ solver

3

Algebraic cryptanalysis

secret key

or

forgery

public key

message

multivariate
signature
scheme

x1 + x2 + 1 = 0
x1x3 + x4 = 0

algebraic modeling

• FES
• Simple
• SAT solvers
• Crossbred
• FXL
• BoolSolve
• F4/F5

MQ solver

3

Algebraic cryptanalysis

secret key

or

forgery

public key

message

multivariate
signature
scheme

x1 + x2 + 1 = 0
x1x3 + x4 = 0

algebraic modeling MQ solver

3

Algebraic cryptanalysis

secret key

or

forgery

• UOV

public key

message

multivariate
signature
scheme

• Direct attack
• Kipnis-Shamir
• Reconciliation
• Intersection

x1 + x2 + 1 = 0
x1x3 + x4 = 0

algebraic modeling MQ solver

4

The MQ problem (recall)

Example. f1 : x1x3 + x2x4 + x1 + x3 + x4 = 0

f2 : x2x3 + x1x4 + x3x4 + x1 + x2 + x4 = 0

f3 : x2x4 + x3x4 + x1 + x3 + 1 = 0

f4 : x1x2 + x1x3 + x2x3 + x3 + x4 + 1 = 0

f5 : x1x2 + x2x3 + x1x4 + x3 = 0

f6 : x1x3 + x1x4 + x3x4 + x1 + x2 + x3 + x4 = 0

Given multivariate quadratic polynomials of variables
over a finite field , find a tuple in , such that

.

m f1, …, fm n
𝔽q x = (x1, …, xn) 𝔽n

q
f1(x) = … = fm(x) = 0

The MQ problem

Overview of solvers

𝔽2

, big 𝔽q q

FES

SAT solvers

Simple

Crossbred

 / F4 F5

FXL
BoolSolve

Hybrid

5

(Fast) Exhaustive Search 
[Bouillaguet, Chen, Cheng, Chou, Niederhagen, Shamir, Yang, 2010]

7

Exhaustive Search

Binary search tree

0 1

8

Exhaustive Search

Binary search tree

0 1

8

Exhaustive Search

Binary search tree

Worst-case complexity: 𝒪(2n)

0 1

9

Fast Exhaustive Search
* The libFES solver

0000
0001
0011
0010
0110
0111
0101
0100

Gray code

• An ordering of the binary system where two successive values differ in only one bit.

Example. n = 4

1100
1101
1111
1110
1010
1011
1001
1000

10

Fast Exhaustive Search Gray code
0000
0001
0011
0010
0110
0111
0101
0100

1100
1101
1111
1110
1010
1011
1001
1000

10

Fast Exhaustive Search Gray code
0000
0001
0011
0010
0110
0111
0101
0100

1100
1101
1111
1110
1010
1011
1001
1000

Worst-case complexity: 𝒪(2n)
! But, it differs from the depth-first traversal in the polynomial factors

Overview of solvers

𝔽2

, big 𝔽q q

FES

SAT solvers

Simple

Crossbred

 / F4 F5

FXL
BoolSolve

Hybrid

11

𝒪(qn)

SAT solvers 
CryptoMiniSat [Soos, Nohl, Castelluccia, 2009], WDSat [T., Dequen, Ionica, 2020] 

 

Simple algorithm 
[Bouillaguet, Delaplace, T., 2021]

13

(SAT solvers)

• Propositional formula in Conjunctive Normal Form (CNF): a conjunction of clauses where each clause is a
disjunction of literals and where each literal is a variable or a negated variable.

Example. (x1 ∨ ¬x2) ∧
(x2 ∨ x3 ∨ x4) ∧
(¬x1 ∨ x4)

13

(SAT solvers)

• Propositional formula in Conjunctive Normal Form (CNF): a conjunction of clauses where each clause is a
disjunction of literals and where each literal is a variable or a negated variable.

Example. (x1 ∨ ¬x2) ∧
(x2 ∨ x3 ∨ x4) ∧
(¬x1 ∨ x4)

Given a propositional formula, determine whether there exists an
interpretation (assignment of all variables) such that the formula is
satisfied (evaluates to TRUE).

The SATisfiability problem

13

(SAT solvers)

• Propositional formula in Conjunctive Normal Form (CNF): a conjunction of clauses where each clause is a
disjunction of literals and where each literal is a variable or a negated variable.

Example. (x1 ∨ ¬x2) ∧
(x2 ∨ x3 ∨ x4) ∧
(¬x1 ∨ x4)

Given a propositional formula, determine whether there exists an
interpretation (assignment of all variables) such that the formula is
satisfied (evaluates to TRUE).

The SATisfiability problem

SAT solver: a tool for solving the SAT problem.

14

Partial assignment and conflicts

14

Partial assignment and conflicts
Which (portion of) branches are missing ??

14

Partial assignment and conflicts
Which (portion of) branches are missing ??

Worst-case complexity: 𝒪(2n)

14

Partial assignment and conflicts
Which (portion of) branches are missing ??

XOR-enabled SAT solvers: take as input XOR constraints as well; perform Gaussian elimination;
*CryptoMiniSat, WDSat

Worst-case complexity: 𝒪(2n)

Overview of solvers

𝔽2

, big 𝔽q q

FES

SAT solvers

Simple

Crossbred

 / F4 F5

FXL
BoolSolve

Hybrid

15

𝒪(qn)

𝒪(2n)

Macaulay matrix

17

Linearisation
Linear systems are easy to solve, nonlinear systems are hard.

17

Linearisation
Linear systems are easy to solve, nonlinear systems are hard.

Linearisation: for each nonlinear monomial, replace all of its occurrences by a new variable.

f1 : x1x3 + x2x4 + x1 + x3 + x4 = 0
f2 : x2x3 + x1x4 + x3x4 + x1 + x2 + x4 = 0
f3 : x2x4 + x3x4 + x1 + x3 + 1 = 0
f4 : x1x2 + x1x3 + x2x3 + x3 + x4 + 1 = 0
f5 : x1x2 + x2x3 + x1x4 + x3 = 0
f6 : x1x3 + x1x4 + x3x4 + x1 + x2 + x3 + x4 = 0

Example.

f1 : y2 + y5 + x1 + x3 + x4 = 0
f2 : y4 + y3 + y6 + x1 + x2 + x4 = 0
f3 : y5 + y6 + x1 + x3 + 1 = 0
f4 : y1 + y2 + y4 + x3 + x4 + 1 = 0
f5 : y1 + y4 + y3 + x3 = 0
f6 : y2 + y3 + y6 + x1 + x2 + x3 + x4 = 0

17

Linearisation
Linear systems are easy to solve, nonlinear systems are hard.

Linearisation: for each nonlinear monomial, replace all of its occurrences by a new variable.

f1 : x1x3 + x2x4 + x1 + x3 + x4 = 0
f2 : x2x3 + x1x4 + x3x4 + x1 + x2 + x4 = 0
f3 : x2x4 + x3x4 + x1 + x3 + 1 = 0
f4 : x1x2 + x1x3 + x2x3 + x3 + x4 + 1 = 0
f5 : x1x2 + x2x3 + x1x4 + x3 = 0
f6 : x1x3 + x1x4 + x3x4 + x1 + x2 + x3 + x4 = 0

Example.

f1 : y2 + y5 + x1 + x3 + x4 = 0
f2 : y4 + y3 + y6 + x1 + x2 + x4 = 0
f3 : y5 + y6 + x1 + x3 + 1 = 0
f4 : y1 + y2 + y4 + x3 + x4 + 1 = 0
f5 : y1 + y4 + y3 + x3 = 0
f6 : y2 + y3 + y6 + x1 + x2 + x3 + x4 = 0

17

Linearisation
Linear systems are easy to solve, nonlinear systems are hard.

Linearisation: for each nonlinear monomial, replace all of its occurrences by a new variable.

18

Linearisation

Linearisation adds solutions: a random quadratic system of equations in variables, when , is

expected to have one solution (probability is for systems over). The corresponding linearised

system has a solution space of dimension .

m n n = m

∼
1
q

𝔽q

(n + 1
2) − m

 quadratic plus linear monomials(n
2) n

18

Linearisation

Linearisation adds solutions: a random quadratic system of equations in variables, when , is

expected to have one solution (probability is for systems over). The corresponding linearised

system has a solution space of dimension .

m n n = m

∼
1
q

𝔽q

(n + 1
2) − m

 quadratic plus linear monomials(n
2) n

Loss of information: e.g. assignment ; ; ; is part of a valid solution to the linearised
system, but .

x1 = 1 x2 = 0 y1 = 1
x1x2 ≠ y1

19

Macaulay matrix

f1 : x1x3 + x2x4 + x1 + x3 + x4 = 0
f2 : x2x3 + x1x4 + x3x4 + x1 + x2 + x4 = 0
f3 : x2x4 + x3x4 + x1 + x3 + 1 = 0
f4 : x1x2 + x1x3 + x2x3 + x3 + x4 + 1 = 0
f5 : x1x2 + x2x3 + x1x4 + x3 = 0
f6 : x1x3 + x1x4 + x3x4 + x1 + x2 + x3 + x4 = 0

x1x2 x1x3 x1x4 x1 x2x3 x2x4 x2 x3x4 x3 x4 1

f1

f2

f3

f4

f5

f6

Monomials

Equations

19

Macaulay matrix

f1 : x1x3 + x2x4 + x1 + x3 + x4 = 0
f2 : x2x3 + x1x4 + x3x4 + x1 + x2 + x4 = 0
f3 : x2x4 + x3x4 + x1 + x3 + 1 = 0
f4 : x1x2 + x1x3 + x2x3 + x3 + x4 + 1 = 0
f5 : x1x2 + x2x3 + x1x4 + x3 = 0
f6 : x1x3 + x1x4 + x3x4 + x1 + x2 + x3 + x4 = 0

0 1 0 1 0 1 0 0 1 1 0

0 0 1 1 1 0 1 1 0 1 0

0 0 0 1 0 1 0 1 1 0 1

1 1 0 1 1 0 0 0 1 1 1

1 0 1 1 1 0 0 0 1 0 0

0 1 1 1 0 0 1 1 1 1 0

x1x2 x1x3 x1x4 x1 x2x3 x2x4 x2 x3x4 x3 x4 1

f1

f2

f3

f4

f5

f6

Monomials

Equations

Simple algorithm 
[Bouillaguet, Delaplace, T., 2021]

21

Simple algorithm
Partial assignment

Gaussian elimination

22

Simple algorithm

Guess sufficiently many variables so that the remaining
polynomial system can be solved by linearization.

23

Simple algorithm: complexity

23

Simple algorithm: complexity
• - number of variablesn

• - number of equationsm

23

Simple algorithm: complexity

Enumeration ends when:

number of monomials number of equations≤

• - number of variablesn

• - number of equationsm

23

Simple algorithm: complexity

Enumeration ends when:

number of monomials number of equations≤

• - number of variablesn

• - number of equationsm

(n−?
2) ≤ m

23

Simple algorithm: complexity

Enumeration ends when:

number of monomials number of equations≤

• - number of variablesn

• - number of equationsm

(n−?
2) ≤ m

𝒪(2n− 2m)

23

Simple algorithm: complexity

Enumeration ends when:

number of monomials number of equations≤

• - number of variablesn

• - number of equationsm

(n−?
2) ≤ m

𝒪(2n− 2m)

See also: Quantum BDT [Edme, Fouque, Schrottenloher]

Overview of solvers

𝔽2

, big 𝔽q q

FES

SAT solvers

Simple

Crossbred

 / F4 F5

FXL
BoolSolve

Hybrid

24

𝒪(qn)

 / 𝒪(2n) 𝒪(2n− 2m)

𝒪(qn− 2m)

Gröbner basis algorithms 
[Buchberger, 1965]

[Lazard, 1983]
 [Faugère, 1999/2002] 

(XL [Courtois, Klimov, Patarin, Shamir, 2000])
F4/F5

26

Gröbner basis algorithms (intuition)
*We are essentially describing the XL algorithm.

27

x1x2 x1x3 x1x4 x1 x2x3 x2x4 x2 x3x4 x3 x4 1

f1

f2

f3

f4

f5

f6

0 1 0 1 0 1 0 0 1 1 0

0 0 1 1 1 0 1 1 0 1 0

0 0 0 1 0 1 0 1 1 0 1

1 1 0 1 1 0 0 0 1 1 1

1 0 1 1 1 0 0 0 1 0 0

0 1 1 1 0 0 1 1 1 1 0

Gröbner basis algorithms (intuition)
*We are essentially describing the XL algorithm.

27

f1 : x1x3 + x2x4 + x1 + x3 + x4 = 0
f2 : x2x3 + x1x4 + x3x4 + x1 + x2 + x4 = 0
f3 : x2x4 + x3x4 + x1 + x3 + 1 = 0
f4 : x1x2 + x1x3 + x2x3 + x3 + x4 + 1 = 0
f5 : x1x2 + x2x3 + x1x4 + x3 = 0
f6 : x1x3 + x1x4 + x3x4 + x1 + x2 + x3 + x4 = 0

x1x2 x1x3 x1x4 x1 x2x3 x2x4 x2 x3x4 x3 x4 1

f1

f2

f3

f4

f5

f6

0 1 0 1 0 1 0 0 1 1 0

0 0 1 1 1 0 1 1 0 1 0

0 0 0 1 0 1 0 1 1 0 1

1 1 0 1 1 0 0 0 1 1 1

1 0 1 1 1 0 0 0 1 0 0

0 1 1 1 0 0 1 1 1 1 0

Gröbner basis algorithms (intuition)
*We are essentially describing the XL algorithm.

28

f1 : x1x3 + x2x4 + x1 + x3 + x4 = 0
f2 : x2x3 + x1x4 + x3x4 + x1 + x2 + x4 = 0
f3 : x2x4 + x3x4 + x1 + x3 + 1 = 0
f4 : x1x2 + x1x3 + x2x3 + x3 + x4 + 1 = 0
f5 : x1x2 + x2x3 + x1x4 + x3 = 0
f6 : x1x3 + x1x4 + x3x4 + x1 + x2 + x3 + x4 = 0

x1x2 x1x3 x1x4 x1 x2x3 x2x4 x2 x3x4 x3 x4 1

f1

f2

f3

f4

f5

f6

0 1 0 1 0 1 0 0 1 1 0

0 0 1 1 1 0 1 1 0 1 0

0 0 0 1 0 1 0 1 1 0 1

1 1 0 1 1 0 0 0 1 1 1

1 0 1 1 1 0 0 0 1 0 0

0 1 1 1 0 0 1 1 1 1 0

x1x2x3 x1x2x4 x1x3x4 x2x3x4

Gröbner basis algorithms (intuition)
*We are essentially describing the XL algorithm.

x1 f1

x2 f1…

D = 3

29

f1 : x1x3 + x2x4 + x1 + x3 + x4 = 0
f2 : x2x3 + x1x4 + x3x4 + x1 + x2 + x4 = 0
f3 : x2x4 + x3x4 + x1 + x3 + 1 = 0
f4 : x1x2 + x1x3 + x2x3 + x3 + x4 + 1 = 0
f5 : x1x2 + x2x3 + x1x4 + x3 = 0
f6 : x1x3 + x1x4 + x3x4 + x1 + x2 + x3 + x4 = 0

x1x2 x1x3 x1x4 x1 x2x3 x2x4 x2 x3x4 x3 x4 1

f1

f2

f3

f4

f5

f6

0 1 0 1 0 1 0 0 1 1 0

0 0 1 1 1 0 1 1 0 1 0

0 0 0 1 0 1 0 1 1 0 1

1 1 0 1 1 0 0 0 1 1 1

1 0 1 1 1 0 0 0 1 0 0

0 1 1 1 0 0 1 1 1 1 0

x1x2x3 x1x2x4 x1x3x4 x2x3x4

x1 f1

x2 f1

Gröbner basis algorithms (intuition)

…

*We are essentially describing the XL algorithm.

x1x2 f1

D = 4

x1x3 f1

x1x2x3x4

30

Gröbner basis

30

Gröbner basis

• Let be the polynomial ring in variables. R = 𝔽q[x1, …, xn] n

30

Gröbner basis

• Let be the polynomial ring in variables. R = 𝔽q[x1, …, xn] n

• An ideal in is an additive subgroup such that if and , then .R I g ∈ R f ∈ I gf ∈ I

30

Gröbner basis

• Let be the polynomial ring in variables. R = 𝔽q[x1, …, xn] n

• An ideal in is an additive subgroup such that if and , then .R I g ∈ R f ∈ I gf ∈ I

• The subset is a set of generators for an ideal if every element can be written in the form 

.

{f1, …, fm} ⊂ R I t ∈ I

t =
n

∑
1

 with gi ∈ R

30

Gröbner basis

• Let be the polynomial ring in variables. R = 𝔽q[x1, …, xn] n

• An ideal in is an additive subgroup such that if and , then .R I g ∈ R f ∈ I gf ∈ I

• The subset is a set of generators for an ideal if every element can be written in the form 

.

{f1, …, fm} ⊂ R I t ∈ I

t =
n

∑
1

 with gi ∈ R

• By the Hilbert basis theorem: every ideal in has a finite set of generators.R

30

Gröbner basis

• Let be the polynomial ring in variables. R = 𝔽q[x1, …, xn] n

• An ideal in is an additive subgroup such that if and , then .R I g ∈ R f ∈ I gf ∈ I

• The subset is a set of generators for an ideal if every element can be written in the form 

.

{f1, …, fm} ⊂ R I t ∈ I

t =
n

∑
1

 with gi ∈ R

• By the Hilbert basis theorem: every ideal in has a finite set of generators.R

• The subset of defined as  
is called an algebraic variety. It is the set of all solutions to the system of equations

.

R V(I) = {(a1, …, an) ∈ 𝔽n
q | f(a1, …, an) = 0 for all f ∈ I}

f1(x1, …, xn) = … = f1(x1, …, xn) = 0

30

Gröbner basis

• Let be the polynomial ring in variables. R = 𝔽q[x1, …, xn] n

• An ideal in is an additive subgroup such that if and , then .R I g ∈ R f ∈ I gf ∈ I

• The subset is a set of generators for an ideal if every element can be written in the form 

.

{f1, …, fm} ⊂ R I t ∈ I

t =
n

∑
1

 with gi ∈ R

• By the Hilbert basis theorem: every ideal in has a finite set of generators.R

• The subset of defined as  
is called an algebraic variety. It is the set of all solutions to the system of equations

.

R V(I) = {(a1, …, an) ∈ 𝔽n
q | f(a1, …, an) = 0 for all f ∈ I}

f1(x1, …, xn) = … = f1(x1, …, xn) = 0

• By the Nullstellensatz: , where denotes the ideal of , i.e.
(Similar to Gauss’ fundamental theorem, but for polynomials in many variables).

I(V(I)) = I I(V) V I(V) = {f ∈ R | f(a) = 0 for all a ∈ V}

31

Gröbner basis

• A Gröbner basis of an ideal is a set of generators with some nice (useful) property.I

31

Gröbner basis

• A Gröbner basis of an ideal is a set of generators with some nice (useful) property.I

For our case, the nice property is that a solution can be extracted easily from the Gröbner basis.

31

Gröbner basis

• A Gröbner basis of an ideal is a set of generators with some nice (useful) property.I

For our case, the nice property is that a solution can be extracted easily from the Gröbner basis.

Example. The shape of a GB with respect to the lexicographic order

f1 : x1x3 + x1 + x2x4 + x5 + x6 + 1 = 0
f2 : x1x4 + x1 + x2x3 + x2 + x3x4 + x3x6 + x4 + x5 = 0

f5 : x1x4 + x2x3 + x2x5 + x5x6 + 1 = 0
f4 : x1x2 + x1x3 + x2x5 + x3 + x4 + x6 + 1 = 0

f6 : x1x3 + x1x4 + x1 + x2 + x3x6 + x3 + x5 = 0

f3 : x1x5 + x1 + x2 + x3x4 + x6 + 1 = 0

31

Gröbner basis

• A Gröbner basis of an ideal is a set of generators with some nice (useful) property.I

For our case, the nice property is that a solution can be extracted easily from the Gröbner basis.

Example. The shape of a GB with respect to the lexicographic order

f1 : x1x3 + x1 + x2x4 + x5 + x6 + 1 = 0
f2 : x1x4 + x1 + x2x3 + x2 + x3x4 + x3x6 + x4 + x5 = 0

f5 : x1x4 + x2x3 + x2x5 + x5x6 + 1 = 0
f4 : x1x2 + x1x3 + x2x5 + x3 + x4 + x6 + 1 = 0

f6 : x1x3 + x1x4 + x1 + x2 + x3x6 + x3 + x5 = 0

f3 : x1x5 + x1 + x2 + x3x4 + x6 + 1 = 0

f′￼1 : x1 + x6 = 0
f′￼2 : x2 + x6 = 0

f′￼5 : x5 = 0
f′￼4 : x4 + x6 + 1 = 0
f′￼3 : x3 + x6 = 0

31

Gröbner basis

• A Gröbner basis of an ideal is a set of generators with some nice (useful) property.I

For our case, the nice property is that a solution can be extracted easily from the Gröbner basis.

Example. The shape of a GB with respect to the lexicographic order

f1 : x1x3 + x1 + x2x4 + x5 + x6 + 1 = 0
f2 : x1x4 + x1 + x2x3 + x2 + x3x4 + x3x6 + x4 + x5 = 0

f5 : x1x4 + x2x3 + x2x5 + x5x6 + 1 = 0
f4 : x1x2 + x1x3 + x2x5 + x3 + x4 + x6 + 1 = 0

f6 : x1x3 + x1x4 + x1 + x2 + x3x6 + x3 + x5 = 0

f3 : x1x5 + x1 + x2 + x3x4 + x6 + 1 = 0

f′￼1 : x1 + x6 = 0
f′￼2 : x2 + x6 = 0

f′￼5 : x5 = 0
f′￼4 : x4 + x6 + 1 = 0
f′￼3 : x3 + x6 = 0

V(< f1, …, f6 >) = {(0,0,0,1,0,0), (1,1,1,0,0,1)}

32

Gröbner basis algorithms:
Buchberger, Lazard, F4, F5

Follow the core idea that we described, but combine the equations in an organised way, rather than multiplying
them by all possible monomials.

Not covered in this talk:

• Monomial orders

• S-polynomials

• Polynomial long division

• Row reduction in parallel

• Reductions to zero

• Syzygy criterion

• …

33

XL/Gröbner basis algorithms: complexity

33

XL/Gröbner basis algorithms: complexity

𝒪 mDreg (
n + Dreg − 1

Dreg)
ω

33

XL/Gröbner basis algorithms: complexity

𝒪 mDreg (
n + Dreg − 1

Dreg)
ω

: degree of regularityDreg (1 − t2)m

(1 − t)n
the power of the first non-positive coefficient in the expansion of

Overview of solvers

𝔽2

, big 𝔽q q

FES

SAT solvers

Simple

Crossbred

 / F4 F5

FXL
BoolSolve

Hybrid

34

𝒪(qn)

 / 𝒪(2n) 𝒪(2n− 2m)

𝒪(qn− 2m)

𝒪((
n + Dreg − 1

Dreg)
ω

)

FXL 
[Courtois, Klimov, Patarin, Shamir, 2000]

Hybrid 
[Bettale, Faugère, Perret, 2009]

BoolSolve 
[Bardet, Faugère, Salvy, Spaenlehauer, 2013]

36

FXL, Hybrid, BoolSolve

Techniques are already covered in the previous section.

Algorithms will be explained in the summary.

The crossbred algorithm 
[Joux, Vitse, 2017]

38

Crossbred algorithm f1 : x1x3 + x2x4 + x1 + x3 + x4 = 0
f2 : x2x3 + x1x4 + x3x4 + x1 + x2 + x4 = 0
f3 : x2x4 + x3x4 + x1 + x3 + 1 = 0
f4 : x1x2 + x1x3 + x2x3 + x3 + x4 + 1 = 0
f5 : x1x2 + x2x3 + x1x4 + x3 = 0
f6 : x1x3 + x1x4 + x3x4 + x1 + x2 + x3 + x4 = 0

x1x2 x1x3 x1x4 x1 x2x3 x2x4 x2 x3x4 x3 x4 1

f1

f2

f3

f4

f5

f6

0 1 0 1 0 1 0 0 1 1 0

0 0 1 1 1 0 1 1 0 1 0

0 0 0 1 0 1 0 1 1 0 1

1 1 0 1 1 0 0 0 1 1 1

1 0 1 1 1 0 0 0 1 0 0

0 1 1 1 0 0 1 1 1 1 0

39

Crossbred algorithm

1 0 0 0 0 0 0 0 0 1 1

0 1 0 0 0 0 1 1 1 1 0

0 0 1 0 0 0 1 1 0 1 0

0 0 0 1 0 0 1 1 1 0 1

0 0 0 0 1 0 0 1 0 0 0

0 0 0 0 0 1 1 1 1 0 1

f1 : x1x3 + x2x4 + x1 + x3 + x4 = 0
f2 : x2x3 + x1x4 + x3x4 + x1 + x2 + x4 = 0
f3 : x2x4 + x3x4 + x1 + x3 + 1 = 0
f4 : x1x2 + x1x3 + x2x3 + x3 + x4 + 1 = 0
f5 : x1x2 + x2x3 + x1x4 + x3 = 0
f6 : x1x3 + x1x4 + x3x4 + x1 + x2 + x3 + x4 = 0

x1x2 x1x3 x2x3 x1x4 x2x4 x3x4 x1 x2 x3 x4 1

Put matrix in reduced row echelon form

f1

f2

f3

f4

f5

f6

…

40

Crossbred algorithm f1 : x1x3 + x2x4 + x1 + x3 + x4 = 0
f2 : x2x3 + x1x4 + x3x4 + x1 + x2 + x4 = 0
f3 : x2x4 + x3x4 + x1 + x3 + 1 = 0
f4 : x1x2 + x1x3 + x2x3 + x3 + x4 + 1 = 0
f5 : x1x2 + x2x3 + x1x4 + x3 = 0
f6 : x1x3 + x1x4 + x3x4 + x1 + x2 + x3 + x4 = 0

Take linear subsystem

1 0 0 0 0 0 0 0 0 1 1

0 1 0 0 0 0 1 1 1 1 0

0 0 1 0 0 0 1 1 0 1 0

0 0 0 1 0 0 1 1 1 0 1

0 0 0 0 1 0 0 1 0 0 0

0 0 0 0 0 1 1 1 1 0 1

x1x2 x1x3 x2x3 x1x4 x2x4 x3x4 x1 x2 x3 x4 1

f1

f2

f3

f4

f5

f6

… } …if we had another 4 equations

41

Crossbred algorithm f1 : x1x3 + x2x4 + x1 + x3 + x4 = 0
f2 : x2x3 + x1x4 + x3x4 + x1 + x2 + x4 = 0
f3 : x2x4 + x3x4 + x1 + x3 + 1 = 0
f4 : x1x2 + x1x3 + x2x3 + x3 + x4 + 1 = 0
f5 : x1x2 + x2x3 + x1x4 + x3 = 0
f6 : x1x3 + x1x4 + x3x4 + x1 + x2 + x3 + x4 = 0

1 0 0 0 0 0 0 0 0 1 1

0 1 0 0 0 0 1 1 1 1 0

0 0 1 0 0 0 1 1 0 1 0

0 0 0 1 0 0 1 1 1 0 1

0 0 0 0 1 0 0 1 0 0 0

0 0 0 0 0 1 1 1 1 0 1

x1x2 x1x3 x2x3 x1x4 x2x4 x3x4 x1 x2 x3 x4 1

f1

f2

f3

f4

f5

f6

…

41

Crossbred algorithm f1 : x1x3 + x2x4 + x1 + x3 + x4 = 0
f2 : x2x3 + x1x4 + x3x4 + x1 + x2 + x4 = 0
f3 : x2x4 + x3x4 + x1 + x3 + 1 = 0
f4 : x1x2 + x1x3 + x2x3 + x3 + x4 + 1 = 0
f5 : x1x2 + x2x3 + x1x4 + x3 = 0
f6 : x1x3 + x1x4 + x3x4 + x1 + x2 + x3 + x4 = 0

1 0 0 0 0 0 0 0 0 1 1

0 1 0 0 0 0 1 1 1 1 0

0 0 1 0 0 0 1 1 0 1 0

0 0 0 1 0 0 1 1 1 0 1

0 0 0 0 1 0 0 1 0 0 0

0 0 0 0 0 1 1 1 1 0 1

x1x2 x1x3 x2x3 x1x4 x2x4 x3x4 x1 x2 x3 x4 1

f1

f2

f3

f4

f5

f6

…

Subsystem is linear in variables .{x1, x2, x3}

Enumerating will result in a linear subsystem.x4

42

Crossbred algorithm f1 : x1x3 + x2x4 + x1 + x3 + x4 = 0
f2 : x2x3 + x1x4 + x3x4 + x1 + x2 + x4 = 0
f3 : x2x4 + x3x4 + x1 + x3 + 1 = 0
f4 : x1x2 + x1x3 + x2x3 + x3 + x4 + 1 = 0
f5 : x1x2 + x2x3 + x1x4 + x3 = 0
f6 : x1x3 + x1x4 + x3x4 + x1 + x2 + x3 + x4 = 0

1 0 0 0 0 0 0 0 0 1 1

0 1 0 0 0 0 1 1 1 1 0

0 0 1 0 0 0 1 1 0 1 0

0 0 0 1 0 0 1 1 1 0 1

0 0 0 0 1 0 0 1 0 0 0

0 0 0 0 0 1 1 1 1 0 1

x1x2 x1x3 x2x3 x1x4 x2x4 x3x4 x1 x2 x3 x4 1

f1

f2

f3

f4

f5

f6

…

42

Crossbred algorithm f1 : x1x3 + x2x4 + x1 + x3 + x4 = 0
f2 : x2x3 + x1x4 + x3x4 + x1 + x2 + x4 = 0
f3 : x2x4 + x3x4 + x1 + x3 + 1 = 0
f4 : x1x2 + x1x3 + x2x3 + x3 + x4 + 1 = 0
f5 : x1x2 + x2x3 + x1x4 + x3 = 0
f6 : x1x3 + x1x4 + x3x4 + x1 + x2 + x3 + x4 = 0

Subsystem can be linearised

1 0 0 0 0 0 0 0 0 1 1

0 1 0 0 0 0 1 1 1 1 0

0 0 1 0 0 0 1 1 0 1 0

0 0 0 1 0 0 1 1 1 0 1

0 0 0 0 1 0 0 1 0 0 0

0 0 0 0 0 1 1 1 1 0 1

x1x2 x1x3 x2x3 x1x4 x2x4 x3x4 x1 x2 x3 x4 1

f1

f2

f3

f4

f5

f6

…

42

Crossbred algorithm f1 : x1x3 + x2x4 + x1 + x3 + x4 = 0
f2 : x2x3 + x1x4 + x3x4 + x1 + x2 + x4 = 0
f3 : x2x4 + x3x4 + x1 + x3 + 1 = 0
f4 : x1x2 + x1x3 + x2x3 + x3 + x4 + 1 = 0
f5 : x1x2 + x2x3 + x1x4 + x3 = 0
f6 : x1x3 + x1x4 + x3x4 + x1 + x2 + x3 + x4 = 0

Subsystem can be linearised

1 0 0 0 0 0 0 0 0 1 1

0 1 0 0 0 0 1 1 1 1 0

0 0 1 0 0 0 1 1 0 1 0

0 0 0 1 0 0 1 1 1 0 1

0 0 0 0 1 0 0 1 0 0 0

0 0 0 0 0 1 1 1 1 0 1

x1x2 x1x3 x2x3 x1x4 x2x4 x3x4 x1 x2 x3 x4 1

f1

f2

f3

f4

f5

f6

… } …if we had another 4 equations, the
subsystem would have a unique
solution.

Otherwise: check candidate solutions
against the other equations.

43

Crossbred algorithm

Enumerate variables.h

Parameters of the algorithm: , , , D k d h

Augment system up to degree (compute degree- Macaulay matrix).D D

Take the subsystem that is at most degree in the chosen variables.d k

Choose of the remaining variables.k

Enumerate all but the chosen variables.k

Linearise the subsystem and solve it.

Check if candidate solutions are consistent with the rest of the system.

43

Crossbred algorithm

Enumerate variables.h

Parameters of the algorithm: , , , D k d h

Augment system up to degree (compute degree- Macaulay matrix).D D

Take the subsystem that is at most degree in the chosen variables.d k

Choose of the remaining variables.k

Enumerate all but the chosen variables.k

Linearise the subsystem and solve it.

Check if candidate solutions are consistent with the rest of the system.

The complexity is calculated as the best trade-off between the four parameters.

44

Crossbred algorithm

Fukuoka MQ challenge record computations (m = 2n)

Overview of solvers

𝔽2

, big 𝔽q q

FES

SAT solvers

Simple

Crossbred

 / F4 F5

FXL
BoolSolve

Hybrid

45

𝒪(qn)

 / 𝒪(2n) 𝒪(2n− 2m)

𝒪(qn− 2m)

𝒪((
n + Dreg − 1

Dreg)
ω

)

𝒪(…)

46

Summary

FES

SAT solvers

Simple

Crossbred

 / F4 F5FXL

BoolSolve Hybrid

(Partial)
enumeration

Candidate
solutions

(subsystem)
Confl Computing a

Gröbner Basis
Extending to

higher degrees

47

Summary

FES

SAT solvers

Simple

Crossbred

 / F4 F5FXL

BoolSolve Hybrid

(Partial)
enumeration

Candidate
solutions

(subsystem)
Confl Computing a

Gröbner Basis
Extending to

higher degrees

48

Summary

FES

SAT solvers

Simple

Crossbred

 / F4 F5FXL

BoolSolve Hybrid

(Partial)
enumeration

Candidate
solutions

(subsystem)
Confl Computing a

Gröbner Basis
Extending to

higher degrees

49

Summary

FES

SAT solvers

Simple

Crossbred

 / F4 F5FXL

BoolSolve Hybrid

(Partial)
enumeration

Candidate
solutions

(subsystem)
Confl Computing a

Gröbner Basis
Extending to

higher degrees

50

Summary

FES

SAT solvers

Simple

Crossbred

 / F4 F5FXL

BoolSolve Hybrid

(Partial)
enumeration

Candidate
solutions

(subsystem)
Confl Computing a

Gröbner Basis
Extending to

higher degrees

51

Summary

FES

SAT solvers

Simple

Crossbred

 / F4 F5FXL

BoolSolve Hybrid

(Partial)
enumeration

Candidate
solutions

(subsystem)
Confl Computing a

Gröbner Basis
Extending to

higher degrees

52

Summary

FES

SAT solvers

Simple

Crossbred

 / F4 F5FXL

BoolSolve Hybrid

(Partial)
enumeration

Candidate
solutions

(subsystem)
Confl Computing a

Gröbner Basis
Extending to

higher degrees

53

Summary

FES

SAT solvers

Simple

Crossbred

 / F4 F5FXL

BoolSolve Hybrid

(Partial)
enumeration

Candidate
solutions

(subsystem)
Confl Computing a

Gröbner Basis
Extending to

higher degrees

54

Summary

FES

SAT solvers

Simple

Crossbred

 / F4 F5FXL

BoolSolve Hybrid

(Partial)
enumeration

Candidate
solutions

(subsystem)
Confl Computing a

Gröbner Basis
Extending to

higher degrees

55

Summary

FES

SAT solvers

Simple

Crossbred

 / F4 F5FXL

BoolSolve Hybrid

(Partial)
enumeration

Candidate
solutions

(subsystem)
Confl Computing a

Gröbner Basis
Extending to

higher degrees

56

Summary

FES

SAT solvers

Simple

Crossbred

 / F4 F5FXL

BoolSolve Hybrid

Candidate
solutions

(subsystem)
Confl Computing a

Gröbner Basis
Extending to

higher degrees
(Partial)

enumeration

57

Summary

FES

SAT solvers

Simple

Crossbred

 / F4 F5FXL

BoolSolve Hybrid

Candidate
solutions

(subsystem)
Confl Computing a

Gröbner Basis
Extending to

higher degrees
(Partial)

enumeration

58

Summary

FES

SAT solvers

Simple

Crossbred

 / F4 F5FXL

BoolSolve Hybrid

Candidate
solutions

(subsystem)
Confl Computing a

Gröbner Basis
Extending to

higher degrees
(Partial)

enumeration

59

Summary

FES

SAT solvers

Simple FXL

Candidate
solutions

(subsystem)
Confl Computing a

Gröbner Basis
Extending to

higher degrees

Crossbred

 / F4 F5

BoolSolve Hybrid

(Partial)
enumeration

60

Summary

FES

SAT solvers

Simple

Crossbred

 / F4 F5FXL

BoolSolve Hybrid

Candidate
solutions

(subsystem)
Confl Computing a

Gröbner Basis
Extending to

higher degrees
(Partial)

enumeration

61

Summary

FES

SAT solvers

Simple

Crossbred

 / F4 F5FXL

BoolSolve Hybrid

Candidate
solutions

(subsystem)
Confl Computing a

Gröbner Basis
Extending to

higher degrees
(Partial)

enumeration

62

Summary

FES

SAT solvers

Simple

Crossbred

 / F4 F5FXL

BoolSolve Hybrid

Candidate
solutions

(subsystem)
Confl Computing a

Gröbner Basis
Extending to

higher degrees
(Partial)

enumeration

63

Summary

FES

SAT solvers

Simple

Crossbred

 / F4 F5FXL

BoolSolve Hybrid

Candidate
solutions

(subsystem)
Confl Computing a

Gröbner Basis
Extending to

higher degrees
(Partial)

enumeration

O V
Modelisation: Attacks on UOV

65

The trapdoor construction (recall)

A A

Signing Verification

Alice BobCompute:
•
•
•
•  

w = H(m) ∈ 𝔽m
q

x = T−1(w) ∈ 𝔽m
q

y = f −1(x) ∈ 𝔽n
q

z = S−1(y) ∈ 𝔽n
q

Compute:
•
•  

Check if

w = H(m) ∈ 𝔽m
q

w′￼= p(z) ∈ 𝔽m
q

w′￼= w

mzmm

f, S, T p

66

The UOV central map (recall)

Toy example: , v = 7 m = 4

F(1) F(2) F(3) F(4)

x1 x2 x7… x8 x11…
x1x2

x7

…

x8

x11

…

oil
variables

vinegar
variables

*Grayed areas represent the entries that are possibly nonzero; blank areas denote the zero entries;

67

Attacks on UOV

• Direct attack

• Reconciliation attack

• Kipnis-Shamir attack

• Intersection attack

O V
Direct attack

69

Direct attack

Try to forge a signature with only the knowledge of the public key.

69

Direct attack

Try to forge a signature with only the knowledge of the public key.

Constraint for modelisation

For a target , find such that .w z p(z) = w

69

Direct attack

Try to forge a signature with only the knowledge of the public key.

Constraint for modelisation

For a target , find such that .w z p(z) = w

Equations:

z⊤P(1)z = w1

z⊤P(2)z = w2

…
z⊤P(m)z = wm

 z⊤P(m)z = wm

 z⊤P(2)z = w1

 z⊤P(1)z = w1

70

Direct attack

Try to forge a signature with only the knowledge of the public key.

Constraint for modelisation

For a target , find such that .w z p(z) = w

Equations:

…

O V
Reconciliation attack 

[Ding, Yang, Chen, Chen, Cheng, 2008]

72

The secret subspace O
The map with a UOV trapdoor vanishes on a linear subspace of :p O ⊂ 𝔽n

q dim(O) = m

.p(o) = 0, for all o ∈ O

72

The secret subspace O
The map with a UOV trapdoor vanishes on a linear subspace of :p O ⊂ 𝔽n

q dim(O) = m

.p(o) = 0, for all o ∈ O
Why ?

72

The secret subspace O
The map with a UOV trapdoor vanishes on a linear subspace of :p O ⊂ 𝔽n

q dim(O) = m

.p(o) = 0, for all o ∈ O
Why ?

Let be the -dimensional space that consists of all the vectors whose first entries (corresponding to the
vinegar variables) are zero: .

O′￼∈ 𝔽n
q m n − m

O′￼ = {v |vi = 0 for all i ≤ n − m}

= 0

72

The secret subspace O
The map with a UOV trapdoor vanishes on a linear subspace of :p O ⊂ 𝔽n

q dim(O) = m

.p(o) = 0, for all o ∈ O
Why ?

 vanishes on .f O′￼

Let be the -dimensional space that consists of all the vectors whose first entries (corresponding to the
vinegar variables) are zero: .

O′￼∈ 𝔽n
q m n − m

O′￼ = {v |vi = 0 for all i ≤ n − m}

= 0

72

The secret subspace O
The map with a UOV trapdoor vanishes on a linear subspace of :p O ⊂ 𝔽n

q dim(O) = m

.p(o) = 0, for all o ∈ O
Why ?

 vanishes on .f O′￼

Let .O = S−1(O′￼)

Let be the -dimensional space that consists of all the vectors whose first entries (corresponding to the
vinegar variables) are zero: .

O′￼∈ 𝔽n
q m n − m

O′￼ = {v |vi = 0 for all i ≤ n − m}

= 0

72

The secret subspace O
The map with a UOV trapdoor vanishes on a linear subspace of :p O ⊂ 𝔽n

q dim(O) = m

.p(o) = 0, for all o ∈ O
Why ?

 vanishes on .f O′￼

Let .O = S−1(O′￼)

 vanishes on .p O

Let be the -dimensional space that consists of all the vectors whose first entries (corresponding to the
vinegar variables) are zero: .

O′￼∈ 𝔽n
q m n − m

O′￼ = {v |vi = 0 for all i ≤ n − m}

= 0

73

Reconciliation attack

Find the secret oil subspace : find linearly independent vectors in .O m O

74

The polar form

The polar form of a quadratic map is the bilinear form such that p = (p(1), …, p(m)) p′￼ = (p′￼(1), …, p′￼(m))

p′￼(k)(x, y) = p(k)(x + y) − p(k)(x) − p(k)(y), for all k ∈ {1,…, m} .

74

The polar form

The polar form of a quadratic map is the bilinear form such that p = (p(1), …, p(m)) p′￼ = (p′￼(1), …, p′￼(m))

p′￼(k)(x, y) = p(k)(x + y) − p(k)(x) − p(k)(y), for all k ∈ {1,…, m} .

What does look like ?p′￼(k)(x, y)

74

The polar form

The polar form of a quadratic map is the bilinear form such that p = (p(1), …, p(m)) p′￼ = (p′￼(1), …, p′￼(m))

p′￼(k)(x, y) = p(k)(x + y) − p(k)(x) − p(k)(y), for all k ∈ {1,…, m} .

What does look like ?p′￼(k)(x, y)

Let be the upper triangular representation of .P̃(k) p(k)

74

The polar form

The polar form of a quadratic map is the bilinear form such that p = (p(1), …, p(m)) p′￼ = (p′￼(1), …, p′￼(m))

p′￼(k)(x, y) = p(k)(x + y) − p(k)(x) − p(k)(y), for all k ∈ {1,…, m} .

What does look like ?p′￼(k)(x, y)

Let be the upper triangular representation of .P̃(k) p(k)

p′￼(k)(x, y) = p(k)(x + y) − p(k)(x) − p(k)(y)

= (x + y)⊤P̃(k)(x + y) − x⊤P̃(k)x − y⊤P̃(k)y

= x⊤P̃(k)y + y⊤P̃(k)x

= x⊤(P̃(k) + P̃(k)⊤)y = x⊤B(k)y

74

The polar form

The polar form of a quadratic map is the bilinear form such that p = (p(1), …, p(m)) p′￼ = (p′￼(1), …, p′￼(m))

p′￼(k)(x, y) = p(k)(x + y) − p(k)(x) − p(k)(y), for all k ∈ {1,…, m} .

What does look like ?p′￼(k)(x, y)

Let be the upper triangular representation of .P̃(k) p(k)

p′￼(k)(x, y) = p(k)(x + y) − p(k)(x) − p(k)(y)

= (x + y)⊤P̃(k)(x + y) − x⊤P̃(k)x − y⊤P̃(k)y

= x⊤P̃(k)y + y⊤P̃(k)x

= x⊤(P̃(k) + P̃(k)⊤)y = x⊤B(k)y

So, is bilinear and symmetric.p′￼

75

Reconciliation attack

Find the secret oil subspace : find linearly independent vectors in .O m O

75

Reconciliation attack

Constraint for modelisation
For any vector , we have that for all . 
For any pair of vectors , we have that for all .

oi ∈ O o⊤
i P(k)oi = 0 k ∈ {1,…, m}

oi, oj ∈ O o⊤
i B(k)oj = 0 k ∈ {1,…, m}

Find the secret oil subspace : find linearly independent vectors in .O m O

75

Reconciliation attack

Constraint for modelisation
For any vector , we have that for all . 
For any pair of vectors , we have that for all .

oi ∈ O o⊤
i P(k)oi = 0 k ∈ {1,…, m}

oi, oj ∈ O o⊤
i B(k)oj = 0 k ∈ {1,…, m}

Equations:

o⊤
i P(k)oi = 0, for k ∈ {1,…, m}

o⊤
i B(k)oj = 0, for k ∈ {1,…, m} and j < i

For doi ∈ {1,…, m}
oi = (o1, …, ov,0,…,1n−i+1,0,…,0)
Model:

Find the secret oil subspace : find linearly independent vectors in .O m O

75

Reconciliation attack

Constraint for modelisation
For any vector , we have that for all . 
For any pair of vectors , we have that for all .

oi ∈ O o⊤
i P(k)oi = 0 k ∈ {1,…, m}

oi, oj ∈ O o⊤
i B(k)oj = 0 k ∈ {1,…, m}

Equations:

o⊤
i P(k)oi = 0, for k ∈ {1,…, m}

o⊤
i B(k)oj = 0, for k ∈ {1,…, m} and j < i

For doi ∈ {1,…, m}
oi = (o1, …, ov,0,…,1n−i+1,0,…,0)
Model:

In the first iteration, we have only quadratic equations, so this is the bottleneck. Linear constraints facilitate
the resolution of a system.

Find the secret oil subspace : find linearly independent vectors in .O m O

76

Reconciliation attack

Constraint for modelisation
For any vector , we have that for all . 
For any pair of vectors , we have that for all .

oi ∈ O o⊤
i P(k)oi = 0 k ∈ {1,…, m}

oi, oj ∈ O o⊤
i B(k)oj = 0 k ∈ {1,…, m}

Equations:

o⊤
i P(k)oi = 0, for k ∈ {1,…, m}

o⊤
i B(k)oj = 0, for k ∈ {1,…, m} and j < i

For doi ∈ {1,…, m}
oi = (o1, …, ov,0,…,1n−i+1,0,…,0)
Model:

In the first iteration, we have only quadratic equations, so this is the bottleneck. Linear constraints facilitate
the resolution of a system.

Find the secret oil subspace : find linearly independent vectors in .O m O

O V
Kipnis-Shamir attack 

[Kipnis, Shamir, 1998]

78

The orthogonal complement of a subspace

Let . The orthogonal complement of is such thatV ⊂ 𝔽n
q V V⊥

.V⊥ = {ṽi ∈ 𝔽n
q |⟨vj, ṽi⟩ = 0, for all vj ∈ V}

If is -dimensional, then is -dimensional.V m V⊥ (n − m)

79

Kipnis-Shamir attack

Find the secret oil subspace . Works well for the balanced case () - the original proposal of OV.O n = 2m

79

Kipnis-Shamir attack

Find the secret oil subspace . Works well for the balanced case () - the original proposal of OV.O n = 2m

Constraint for modelisation

For each , we have that .B(k) B(k)O ⊂ O⊥

79

Kipnis-Shamir attack

Find the secret oil subspace . Works well for the balanced case () - the original proposal of OV.O n = 2m

Constraint for modelisation

For each , we have that .B(k) B(k)O ⊂ O⊥

⟨o2, B(k)o1⟩ = o⊤
2 B(k)o1

= p′￼(k)(o1, o2)
= p(k)(o1 + o2) − p(k)(o1) − p(k)(o2) = 0

79

Kipnis-Shamir attack

Find the secret oil subspace . Works well for the balanced case () - the original proposal of OV.O n = 2m

Constraint for modelisation

For each , we have that .B(k) B(k)O ⊂ O⊥

⟨o2, B(k)o1⟩ = o⊤
2 B(k)o1

= p′￼(k)(o1, o2)
= p(k)(o1 + o2) − p(k)(o1) − p(k)(o2) = 0

Since , we have that .dim(O⊥) = n − m = m B(k)O = O⊥

79

Kipnis-Shamir attack

Find the secret oil subspace . Works well for the balanced case () - the original proposal of OV.O n = 2m

Constraint for modelisation

For each , we have that .B(k) B(k)O ⊂ O⊥

⟨o2, B(k)o1⟩ = o⊤
2 B(k)o1

= p′￼(k)(o1, o2)
= p(k)(o1 + o2) − p(k)(o1) − p(k)(o2) = 0

Since , we have that .dim(O⊥) = n − m = m B(k)O = O⊥

Since this is true for all , we have that .B(k) B(k1)O = O⊥ = B(k2)O

79

Kipnis-Shamir attack

Find the secret oil subspace . Works well for the balanced case () - the original proposal of OV.O n = 2m

Constraint for modelisation

For each , we have that .B(k) B(k)O ⊂ O⊥

⟨o2, B(k)o1⟩ = o⊤
2 B(k)o1

= p′￼(k)(o1, o2)
= p(k)(o1 + o2) − p(k)(o1) − p(k)(o2) = 0

Hence, we have that , for all pairs .B(k1)−1B(k2)O = O B(k1), B(k2)

Since , we have that .dim(O⊥) = n − m = m B(k)O = O⊥

Since this is true for all , we have that .B(k) B(k1)O = O⊥ = B(k2)O

79

Kipnis-Shamir attack

Find the secret oil subspace . Works well for the balanced case () - the original proposal of OV.O n = 2m

Finding a common invariant subspace of a large number of linear maps is easy.

Constraint for modelisation

For each , we have that .B(k) B(k)O ⊂ O⊥

⟨o2, B(k)o1⟩ = o⊤
2 B(k)o1

= p′￼(k)(o1, o2)
= p(k)(o1 + o2) − p(k)(o1) − p(k)(o2) = 0

Hence, we have that , for all pairs .B(k1)−1B(k2)O = O B(k1), B(k2)

Since , we have that .dim(O⊥) = n − m = m B(k)O = O⊥

Since this is true for all , we have that .B(k) B(k1)O = O⊥ = B(k2)O

79

Kipnis-Shamir attack

Find the secret oil subspace . Works well for the balanced case () - the original proposal of OV.O n = 2m

Finding a common invariant subspace of a large number of linear maps is easy.

Oil and Vinegar becomes Unbalanced Oil and Vinegar because of this attack.

Constraint for modelisation

For each , we have that .B(k) B(k)O ⊂ O⊥

⟨o2, B(k)o1⟩ = o⊤
2 B(k)o1

= p′￼(k)(o1, o2)
= p(k)(o1 + o2) − p(k)(o1) − p(k)(o2) = 0

Hence, we have that , for all pairs .B(k1)−1B(k2)O = O B(k1), B(k2)

Since , we have that .dim(O⊥) = n − m = m B(k)O = O⊥

Since this is true for all , we have that .B(k) B(k1)O = O⊥ = B(k2)O

O V
Intersection attack 

[Beullens, 2021]

81

Intersection attack

Find the secret oil subspace . Use the ideas of the Kipnis-Shamir attack, but for the unbalanced case ().O n > 2m

81

Intersection attack

Find the secret oil subspace . Use the ideas of the Kipnis-Shamir attack, but for the unbalanced case ().O n > 2m

Constraint for modelisation

Since , . We still have and , but they are not (necessarily) the same
subspace.

n > 2m dim(O⊥) > m B(k1)O ⊂ O⊥ B(k2)O ⊂ O⊥

81

Intersection attack

Find the secret oil subspace . Use the ideas of the Kipnis-Shamir attack, but for the unbalanced case ().O n > 2m

Constraint for modelisation

Since , . We still have and , but they are not (necessarily) the same
subspace.

n > 2m dim(O⊥) > m B(k1)O ⊂ O⊥ B(k2)O ⊂ O⊥

Idea: assuming that , try to find a vector in this intersection.B(k1)O ∩ B(k2)O ≠ ∅ x

81

Intersection attack

Find the secret oil subspace . Use the ideas of the Kipnis-Shamir attack, but for the unbalanced case ().O n > 2m

Constraint for modelisation

Since , . We still have and , but they are not (necessarily) the same
subspace.

n > 2m dim(O⊥) > m B(k1)O ⊂ O⊥ B(k2)O ⊂ O⊥

If is in the intersection , then both and are in .x B(k1)O ∩ B(k2)O B(k1)−1x B(k2)−1x O
Idea: assuming that , try to find a vector in this intersection.B(k1)O ∩ B(k2)O ≠ ∅ x

81

Intersection attack

Find the secret oil subspace . Use the ideas of the Kipnis-Shamir attack, but for the unbalanced case ().O n > 2m

Constraint for modelisation

Since , . We still have and , but they are not (necessarily) the same
subspace.

n > 2m dim(O⊥) > m B(k1)O ⊂ O⊥ B(k2)O ⊂ O⊥

Equations:

p(B(k1)−1x) = 0
p(B(k2)−1x) = 0
p′￼(B(k1)−1x, B(k2)−1x) = 0

If is in the intersection , then both and are in .x B(k1)O ∩ B(k2)O B(k1)−1x B(k2)−1x O
Idea: assuming that , try to find a vector in this intersection.B(k1)O ∩ B(k2)O ≠ ∅ x

81

Intersection attack

Find the secret oil subspace . Use the ideas of the Kipnis-Shamir attack, but for the unbalanced case ().O n > 2m

Constraint for modelisation

Since , . We still have and , but they are not (necessarily) the same
subspace.

n > 2m dim(O⊥) > m B(k1)O ⊂ O⊥ B(k2)O ⊂ O⊥

Equations:

p(B(k1)−1x) = 0
p(B(k2)−1x) = 0
p′￼(B(k1)−1x, B(k2)−1x) = 0

The attack can be generalised to find a vector in the intersection of more than two subspaces.

If is in the intersection , then both and are in .x B(k1)O ∩ B(k2)O B(k1)−1x B(k2)−1x O
Idea: assuming that , try to find a vector in this intersection.B(k1)O ∩ B(k2)O ≠ ∅ x

82

Recap

‣ The MQ problem is (usually) hard.

‣ We have a variety of solvers for (over)determined systems.

‣ Modelisation can be crucial to how efficient an attack is.

‣ The MQ problem can be easy for some structured systems. We use this to build trapdoors in crypto.

‣ We saw three different ways to model the recovery of the UOV trapdoor.

82

Recap

‣ The MQ problem is (usually) hard.

‣ We have a variety of solvers for (over)determined systems.

‣ Modelisation can be crucial to how efficient an attack is.

‣ The MQ problem can be easy for some structured systems. We use this to build trapdoors in crypto.

‣ We saw three different ways to model the recovery of the UOV trapdoor.

Credits: created with , and Manim.

