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Algebraic cryptanalysis 

A type of cryptanalytic methods where the problem of finding the secret key 
(or any attack goal) is reduced to the problem of finding a solution to a 
nonlinear multivariate polynomial system of equations.
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The MQ problem (recall)

Example. f1 : x1x3 + x2x4 + x1 + x3 + x4 = 0

f2 : x2x3 + x1x4 + x3x4 + x1 + x2 + x4 = 0

f3 : x2x4 + x3x4 + x1 + x3 + 1 = 0

f4 : x1x2 + x1x3 + x2x3 + x3 + x4 + 1 = 0

f5 : x1x2 + x2x3 + x1x4 + x3 = 0

f6 : x1x3 + x1x4 + x3x4 + x1 + x2 + x3 + x4 = 0

Given  multivariate quadratic polynomials  of  variables 
over a finite field , find a tuple  in , such that 

.

m f1, …, fm n
𝔽q x = (x1, …, xn) 𝔽n

q
f1(x) = … = fm(x) = 0

The MQ problem
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(Fast) Exhaustive Search 
[Bouillaguet, Chen, Cheng, Chou, Niederhagen, Shamir, Yang, 2010]
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Exhaustive Search
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Exhaustive Search

Binary search tree

Worst-case complexity: 𝒪(2n)

0 1
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Fast Exhaustive Search
* The libFES solver

0000
0001
0011
0010
0110
0111
0101
0100

Gray code

• An ordering of the binary system where two successive values differ in only one bit.

Example. n = 4

1100
1101
1111
1110
1010
1011
1001
1000
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Fast Exhaustive Search Gray code
0000
0001
0011
0010
0110
0111
0101
0100

1100
1101
1111
1110
1010
1011
1001
1000

Worst-case complexity: 𝒪(2n)
! But, it differs from the depth-first traversal in the polynomial factors
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𝒪(qn)



SAT solvers 
CryptoMiniSat [Soos, Nohl, Castelluccia, 2009], WDSat [T., Dequen, Ionica, 2020] 

 

Simple algorithm 
[Bouillaguet, Delaplace, T., 2021]
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(SAT solvers)

• Propositional formula in Conjunctive Normal Form (CNF): a conjunction of clauses where each clause is a 
disjunction of literals and where each literal is a variable or a negated variable.

Example. (x1 ∨ ¬x2) ∧
(x2 ∨ x3 ∨ x4) ∧
(¬x1 ∨ x4)
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interpretation (assignment of all variables) such that the formula is 
satisfied (evaluates to TRUE).
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(SAT solvers)

• Propositional formula in Conjunctive Normal Form (CNF): a conjunction of clauses where each clause is a 
disjunction of literals and where each literal is a variable or a negated variable.

Example. (x1 ∨ ¬x2) ∧
(x2 ∨ x3 ∨ x4) ∧
(¬x1 ∨ x4)

Given a propositional formula, determine whether there exists an 
interpretation (assignment of all variables) such that the formula is 
satisfied (evaluates to TRUE).

The SATisfiability problem

SAT solver: a tool for solving the SAT problem.
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Partial assignment and conflicts
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Which (portion of) branches are missing ??
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Partial assignment and conflicts
Which (portion of) branches are missing ??

Worst-case complexity: 𝒪(2n)
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Partial assignment and conflicts
Which (portion of) branches are missing ??

XOR-enabled SAT solvers: take as input XOR constraints as well; perform Gaussian elimination;
*CryptoMiniSat, WDSat

Worst-case complexity: 𝒪(2n)
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, big 𝔽q q

FES
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𝒪(qn)

𝒪(2n)



Macaulay matrix
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Linearisation
Linear systems are easy to solve, nonlinear systems are hard.
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Linearisation
Linear systems are easy to solve, nonlinear systems are hard.

Linearisation: for each nonlinear monomial, replace all of its occurrences by a new variable.



f1 : x1x3 + x2x4 + x1 + x3 + x4 = 0
f2 : x2x3 + x1x4 + x3x4 + x1 + x2 + x4 = 0
f3 : x2x4 + x3x4 + x1 + x3 + 1 = 0
f4 : x1x2 + x1x3 + x2x3 + x3 + x4 + 1 = 0
f5 : x1x2 + x2x3 + x1x4 + x3 = 0
f6 : x1x3 + x1x4 + x3x4 + x1 + x2 + x3 + x4 = 0

Example.

f1 : y2 + y5 + x1 + x3 + x4 = 0
f2 : y4 + y3 + y6 + x1 + x2 + x4 = 0
f3 : y5 + y6 + x1 + x3 + 1 = 0
f4 : y1 + y2 + y4 + x3 + x4 + 1 = 0
f5 : y1 + y4 + y3 + x3 = 0
f6 : y2 + y3 + y6 + x1 + x2 + x3 + x4 = 0
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Linearisation
Linear systems are easy to solve, nonlinear systems are hard.

Linearisation: for each nonlinear monomial, replace all of its occurrences by a new variable.
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Linearisation

Linearisation adds solutions: a random quadratic system of  equations in  variables, when , is 

expected to have one solution (probability is  for systems over ). The corresponding linearised 

system has a solution space of dimension .

m n n = m

∼
1
q

𝔽q

(n + 1
2 ) − m

 quadratic plus  linear monomials(n
2) n
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Linearisation

Linearisation adds solutions: a random quadratic system of  equations in  variables, when , is 

expected to have one solution (probability is  for systems over ). The corresponding linearised 

system has a solution space of dimension .

m n n = m

∼
1
q

𝔽q

(n + 1
2 ) − m

 quadratic plus  linear monomials(n
2) n

Loss of information: e.g. assignment ; ; ; is part of a valid solution to the linearised 
system, but .

x1 = 1 x2 = 0 y1 = 1
x1x2 ≠ y1
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Macaulay matrix

f1 : x1x3 + x2x4 + x1 + x3 + x4 = 0
f2 : x2x3 + x1x4 + x3x4 + x1 + x2 + x4 = 0
f3 : x2x4 + x3x4 + x1 + x3 + 1 = 0
f4 : x1x2 + x1x3 + x2x3 + x3 + x4 + 1 = 0
f5 : x1x2 + x2x3 + x1x4 + x3 = 0
f6 : x1x3 + x1x4 + x3x4 + x1 + x2 + x3 + x4 = 0

x1x2 x1x3 x1x4 x1 x2x3 x2x4 x2 x3x4 x3 x4 1

f1

f2

f3

f4

f5

f6

Monomials

Equations
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Macaulay matrix

f1 : x1x3 + x2x4 + x1 + x3 + x4 = 0
f2 : x2x3 + x1x4 + x3x4 + x1 + x2 + x4 = 0
f3 : x2x4 + x3x4 + x1 + x3 + 1 = 0
f4 : x1x2 + x1x3 + x2x3 + x3 + x4 + 1 = 0
f5 : x1x2 + x2x3 + x1x4 + x3 = 0
f6 : x1x3 + x1x4 + x3x4 + x1 + x2 + x3 + x4 = 0

0 1 0 1 0 1 0 0 1 1 0

0 0 1 1 1 0 1 1 0 1 0

0 0 0 1 0 1 0 1 1 0 1

1 1 0 1 1 0 0 0 1 1 1

1 0 1 1 1 0 0 0 1 0 0

0 1 1 1 0 0 1 1 1 1 0

x1x2 x1x3 x1x4 x1 x2x3 x2x4 x2 x3x4 x3 x4 1

f1

f2

f3

f4

f5

f6

Monomials

Equations



Simple algorithm 
[Bouillaguet, Delaplace, T., 2021]
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Simple algorithm
Partial assignment

Gaussian elimination
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Simple algorithm

Guess sufficiently many variables so that the remaining 
polynomial system can be solved by linearization.



23

Simple algorithm: complexity
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Simple algorithm: complexity
•  - number of variablesn

•  - number of equationsm
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Enumeration ends when:

number of monomials  number of equations≤

•  - number of variablesn
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Simple algorithm: complexity

Enumeration ends when:

number of monomials  number of equations≤

•  - number of variablesn

•  - number of equationsm

(n−?
2 ) ≤ m

𝒪(2n− 2m)
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Simple algorithm: complexity

Enumeration ends when:

number of monomials  number of equations≤

•  - number of variablesn

•  - number of equationsm

(n−?
2 ) ≤ m

𝒪(2n− 2m)

See also: Quantum BDT [Edme, Fouque, Schrottenloher]
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𝒪(qn)

 / 𝒪(2n) 𝒪(2n− 2m)

𝒪(qn− 2m)



Gröbner basis algorithms 
[Buchberger, 1965]

[Lazard, 1983]
 [Faugère, 1999/2002] 

(XL [Courtois, Klimov, Patarin, Shamir, 2000])
F4/F5
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Gröbner basis algorithms (intuition)
*We are essentially describing the XL algorithm.
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x1x2 x1x3 x1x4 x1 x2x3 x2x4 x2 x3x4 x3 x4 1

f1

f2

f3

f4

f5

f6

0 1 0 1 0 1 0 0 1 1 0

0 0 1 1 1 0 1 1 0 1 0

0 0 0 1 0 1 0 1 1 0 1

1 1 0 1 1 0 0 0 1 1 1

1 0 1 1 1 0 0 0 1 0 0

0 1 1 1 0 0 1 1 1 1 0

Gröbner basis algorithms (intuition)
*We are essentially describing the XL algorithm.
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f1 : x1x3 + x2x4 + x1 + x3 + x4 = 0
f2 : x2x3 + x1x4 + x3x4 + x1 + x2 + x4 = 0
f3 : x2x4 + x3x4 + x1 + x3 + 1 = 0
f4 : x1x2 + x1x3 + x2x3 + x3 + x4 + 1 = 0
f5 : x1x2 + x2x3 + x1x4 + x3 = 0
f6 : x1x3 + x1x4 + x3x4 + x1 + x2 + x3 + x4 = 0

x1x2 x1x3 x1x4 x1 x2x3 x2x4 x2 x3x4 x3 x4 1

f1

f2

f3

f4

f5

f6

0 1 0 1 0 1 0 0 1 1 0

0 0 1 1 1 0 1 1 0 1 0

0 0 0 1 0 1 0 1 1 0 1

1 1 0 1 1 0 0 0 1 1 1

1 0 1 1 1 0 0 0 1 0 0

0 1 1 1 0 0 1 1 1 1 0

Gröbner basis algorithms (intuition)
*We are essentially describing the XL algorithm.
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f1 : x1x3 + x2x4 + x1 + x3 + x4 = 0
f2 : x2x3 + x1x4 + x3x4 + x1 + x2 + x4 = 0
f3 : x2x4 + x3x4 + x1 + x3 + 1 = 0
f4 : x1x2 + x1x3 + x2x3 + x3 + x4 + 1 = 0
f5 : x1x2 + x2x3 + x1x4 + x3 = 0
f6 : x1x3 + x1x4 + x3x4 + x1 + x2 + x3 + x4 = 0

x1x2 x1x3 x1x4 x1 x2x3 x2x4 x2 x3x4 x3 x4 1

f1

f2

f3

f4

f5

f6

0 1 0 1 0 1 0 0 1 1 0

0 0 1 1 1 0 1 1 0 1 0

0 0 0 1 0 1 0 1 1 0 1

1 1 0 1 1 0 0 0 1 1 1

1 0 1 1 1 0 0 0 1 0 0

0 1 1 1 0 0 1 1 1 1 0

x1x2x3 x1x2x4 x1x3x4 x2x3x4

Gröbner basis algorithms (intuition)
*We are essentially describing the XL algorithm.

x1 f1

x2 f1…

D = 3
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f1 : x1x3 + x2x4 + x1 + x3 + x4 = 0
f2 : x2x3 + x1x4 + x3x4 + x1 + x2 + x4 = 0
f3 : x2x4 + x3x4 + x1 + x3 + 1 = 0
f4 : x1x2 + x1x3 + x2x3 + x3 + x4 + 1 = 0
f5 : x1x2 + x2x3 + x1x4 + x3 = 0
f6 : x1x3 + x1x4 + x3x4 + x1 + x2 + x3 + x4 = 0

x1x2 x1x3 x1x4 x1 x2x3 x2x4 x2 x3x4 x3 x4 1

f1

f2

f3

f4

f5

f6

0 1 0 1 0 1 0 0 1 1 0

0 0 1 1 1 0 1 1 0 1 0

0 0 0 1 0 1 0 1 1 0 1

1 1 0 1 1 0 0 0 1 1 1

1 0 1 1 1 0 0 0 1 0 0

0 1 1 1 0 0 1 1 1 1 0

x1x2x3 x1x2x4 x1x3x4 x2x3x4

x1 f1

x2 f1

Gröbner basis algorithms (intuition)

…

*We are essentially describing the XL algorithm.

x1x2 f1

D = 4

x1x3 f1

x1x2x3x4
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Gröbner basis

• Let  be the polynomial ring in  variables. R = 𝔽q[x1, …, xn] n

• An ideal in  is an additive subgroup  such that if  and , then .R I g ∈ R f ∈ I gf ∈ I

• The subset  is a set of generators for an ideal  if every element  can be written in the form 

.

{f1, …, fm} ⊂ R I t ∈ I

t =
n

∑
1

 with gi ∈ R

• By the Hilbert basis theorem: every ideal in  has a finite set of generators.R

• The subset of  defined as  
is called an algebraic variety. It is the set of all solutions to the system of equations 

.

R V(I) = {(a1, …, an) ∈ 𝔽n
q | f(a1, …, an) = 0 for all f ∈ I}

f1(x1, …, xn) = … = f1(x1, …, xn) = 0
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Gröbner basis

• Let  be the polynomial ring in  variables. R = 𝔽q[x1, …, xn] n

• An ideal in  is an additive subgroup  such that if  and , then .R I g ∈ R f ∈ I gf ∈ I

• The subset  is a set of generators for an ideal  if every element  can be written in the form 

.

{f1, …, fm} ⊂ R I t ∈ I

t =
n

∑
1

 with gi ∈ R

• By the Hilbert basis theorem: every ideal in  has a finite set of generators.R

• The subset of  defined as  
is called an algebraic variety. It is the set of all solutions to the system of equations 

.

R V(I) = {(a1, …, an) ∈ 𝔽n
q | f(a1, …, an) = 0 for all f ∈ I}

f1(x1, …, xn) = … = f1(x1, …, xn) = 0

• By the Nullstellensatz: , where  denotes the ideal of , i.e.  
(Similar to Gauss’ fundamental theorem, but for polynomials in many variables).

I(V(I)) = I I(V ) V I(V ) = {f ∈ R | f(a) = 0 for all a ∈ V}
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Gröbner basis

• A Gröbner basis of an ideal  is a set of generators with some nice (useful) property.I

For our case, the nice property is that a solution can be extracted easily from the Gröbner basis.

Example. The shape of a GB with respect to the lexicographic order

f1 : x1x3 + x1 + x2x4 + x5 + x6 + 1 = 0
f2 : x1x4 + x1 + x2x3 + x2 + x3x4 + x3x6 + x4 + x5 = 0

f5 : x1x4 + x2x3 + x2x5 + x5x6 + 1 = 0
f4 : x1x2 + x1x3 + x2x5 + x3 + x4 + x6 + 1 = 0

f6 : x1x3 + x1x4 + x1 + x2 + x3x6 + x3 + x5 = 0

f3 : x1x5 + x1 + x2 + x3x4 + x6 + 1 = 0
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Gröbner basis

• A Gröbner basis of an ideal  is a set of generators with some nice (useful) property.I

For our case, the nice property is that a solution can be extracted easily from the Gröbner basis.

Example. The shape of a GB with respect to the lexicographic order

f1 : x1x3 + x1 + x2x4 + x5 + x6 + 1 = 0
f2 : x1x4 + x1 + x2x3 + x2 + x3x4 + x3x6 + x4 + x5 = 0

f5 : x1x4 + x2x3 + x2x5 + x5x6 + 1 = 0
f4 : x1x2 + x1x3 + x2x5 + x3 + x4 + x6 + 1 = 0

f6 : x1x3 + x1x4 + x1 + x2 + x3x6 + x3 + x5 = 0

f3 : x1x5 + x1 + x2 + x3x4 + x6 + 1 = 0

f′￼1 : x1 + x6 = 0
f′￼2 : x2 + x6 = 0

f′￼5 : x5 = 0
f′￼4 : x4 + x6 + 1 = 0
f′￼3 : x3 + x6 = 0

***************
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Gröbner basis

• A Gröbner basis of an ideal  is a set of generators with some nice (useful) property.I

For our case, the nice property is that a solution can be extracted easily from the Gröbner basis.

Example. The shape of a GB with respect to the lexicographic order

f1 : x1x3 + x1 + x2x4 + x5 + x6 + 1 = 0
f2 : x1x4 + x1 + x2x3 + x2 + x3x4 + x3x6 + x4 + x5 = 0

f5 : x1x4 + x2x3 + x2x5 + x5x6 + 1 = 0
f4 : x1x2 + x1x3 + x2x5 + x3 + x4 + x6 + 1 = 0

f6 : x1x3 + x1x4 + x1 + x2 + x3x6 + x3 + x5 = 0

f3 : x1x5 + x1 + x2 + x3x4 + x6 + 1 = 0

f′￼1 : x1 + x6 = 0
f′￼2 : x2 + x6 = 0

f′￼5 : x5 = 0
f′￼4 : x4 + x6 + 1 = 0
f′￼3 : x3 + x6 = 0

***************

V( < f1, …, f6 > ) = {(0,0,0,1,0,0), (1,1,1,0,0,1)}
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Gröbner basis algorithms: 
Buchberger, Lazard, F4, F5

Follow the core idea that we described, but combine the equations in an organised way, rather than multiplying 
them by all possible monomials. 

Not covered in this talk: 

• Monomial orders

• S-polynomials

• Polynomial long division

• Row reduction in parallel

• Reductions to zero

• Syzygy criterion

• …
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XL/Gröbner basis algorithms: complexity
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XL/Gröbner basis algorithms: complexity

𝒪 mDreg (
n + Dreg − 1

Dreg )
ω



33

XL/Gröbner basis algorithms: complexity

𝒪 mDreg (
n + Dreg − 1

Dreg )
ω

: degree of regularityDreg (1 − t2)m

(1 − t)n
the power of the first non-positive coefficient in the expansion of
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𝒪(qn)

 / 𝒪(2n) 𝒪(2n− 2m)

𝒪(qn− 2m)

𝒪((
n + Dreg − 1

Dreg )
ω

)



FXL 
[Courtois, Klimov, Patarin, Shamir, 2000]

Hybrid 
[Bettale, Faugère, Perret, 2009]

BoolSolve 
[Bardet, Faugère, Salvy, Spaenlehauer, 2013]
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FXL, Hybrid, BoolSolve

Techniques are already covered in the previous section. 

Algorithms will be explained in the summary.



The crossbred algorithm 
[Joux, Vitse, 2017]
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Crossbred algorithm f1 : x1x3 + x2x4 + x1 + x3 + x4 = 0
f2 : x2x3 + x1x4 + x3x4 + x1 + x2 + x4 = 0
f3 : x2x4 + x3x4 + x1 + x3 + 1 = 0
f4 : x1x2 + x1x3 + x2x3 + x3 + x4 + 1 = 0
f5 : x1x2 + x2x3 + x1x4 + x3 = 0
f6 : x1x3 + x1x4 + x3x4 + x1 + x2 + x3 + x4 = 0

x1x2 x1x3 x1x4 x1 x2x3 x2x4 x2 x3x4 x3 x4 1

f1

f2

f3

f4

f5

f6

0 1 0 1 0 1 0 0 1 1 0

0 0 1 1 1 0 1 1 0 1 0

0 0 0 1 0 1 0 1 1 0 1

1 1 0 1 1 0 0 0 1 1 1

1 0 1 1 1 0 0 0 1 0 0

0 1 1 1 0 0 1 1 1 1 0
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Crossbred algorithm

1 0 0 0 0 0 0 0 0 1 1

0 1 0 0 0 0 1 1 1 1 0

0 0 1 0 0 0 1 1 0 1 0

0 0 0 1 0 0 1 1 1 0 1

0 0 0 0 1 0 0 1 0 0 0

0 0 0 0 0 1 1 1 1 0 1

f1 : x1x3 + x2x4 + x1 + x3 + x4 = 0
f2 : x2x3 + x1x4 + x3x4 + x1 + x2 + x4 = 0
f3 : x2x4 + x3x4 + x1 + x3 + 1 = 0
f4 : x1x2 + x1x3 + x2x3 + x3 + x4 + 1 = 0
f5 : x1x2 + x2x3 + x1x4 + x3 = 0
f6 : x1x3 + x1x4 + x3x4 + x1 + x2 + x3 + x4 = 0

x1x2 x1x3 x2x3 x1x4 x2x4 x3x4 x1 x2 x3 x4 1

Put matrix in reduced row echelon form

f1

f2

f3

f4

f5

f6

…
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Crossbred algorithm f1 : x1x3 + x2x4 + x1 + x3 + x4 = 0
f2 : x2x3 + x1x4 + x3x4 + x1 + x2 + x4 = 0
f3 : x2x4 + x3x4 + x1 + x3 + 1 = 0
f4 : x1x2 + x1x3 + x2x3 + x3 + x4 + 1 = 0
f5 : x1x2 + x2x3 + x1x4 + x3 = 0
f6 : x1x3 + x1x4 + x3x4 + x1 + x2 + x3 + x4 = 0

Take linear subsystem

1 0 0 0 0 0 0 0 0 1 1

0 1 0 0 0 0 1 1 1 1 0

0 0 1 0 0 0 1 1 0 1 0

0 0 0 1 0 0 1 1 1 0 1

0 0 0 0 1 0 0 1 0 0 0

0 0 0 0 0 1 1 1 1 0 1

x1x2 x1x3 x2x3 x1x4 x2x4 x3x4 x1 x2 x3 x4 1

f1

f2

f3

f4

f5

f6

… } …if we had another 4 equations
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Crossbred algorithm f1 : x1x3 + x2x4 + x1 + x3 + x4 = 0
f2 : x2x3 + x1x4 + x3x4 + x1 + x2 + x4 = 0
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f4 : x1x2 + x1x3 + x2x3 + x3 + x4 + 1 = 0
f5 : x1x2 + x2x3 + x1x4 + x3 = 0
f6 : x1x3 + x1x4 + x3x4 + x1 + x2 + x3 + x4 = 0

1 0 0 0 0 0 0 0 0 1 1

0 1 0 0 0 0 1 1 1 1 0

0 0 1 0 0 0 1 1 0 1 0

0 0 0 1 0 0 1 1 1 0 1

0 0 0 0 1 0 0 1 0 0 0

0 0 0 0 0 1 1 1 1 0 1

x1x2 x1x3 x2x3 x1x4 x2x4 x3x4 x1 x2 x3 x4 1

f1

f2

f3

f4

f5

f6

…
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Crossbred algorithm f1 : x1x3 + x2x4 + x1 + x3 + x4 = 0
f2 : x2x3 + x1x4 + x3x4 + x1 + x2 + x4 = 0
f3 : x2x4 + x3x4 + x1 + x3 + 1 = 0
f4 : x1x2 + x1x3 + x2x3 + x3 + x4 + 1 = 0
f5 : x1x2 + x2x3 + x1x4 + x3 = 0
f6 : x1x3 + x1x4 + x3x4 + x1 + x2 + x3 + x4 = 0

1 0 0 0 0 0 0 0 0 1 1

0 1 0 0 0 0 1 1 1 1 0

0 0 1 0 0 0 1 1 0 1 0

0 0 0 1 0 0 1 1 1 0 1

0 0 0 0 1 0 0 1 0 0 0

0 0 0 0 0 1 1 1 1 0 1

x1x2 x1x3 x2x3 x1x4 x2x4 x3x4 x1 x2 x3 x4 1

f1

f2

f3

f4

f5

f6

…

Subsystem is linear in variables .{x1, x2, x3}

Enumerating  will result in a linear subsystem.x4
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Crossbred algorithm f1 : x1x3 + x2x4 + x1 + x3 + x4 = 0
f2 : x2x3 + x1x4 + x3x4 + x1 + x2 + x4 = 0
f3 : x2x4 + x3x4 + x1 + x3 + 1 = 0
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0 0 0 0 0 1 1 1 1 0 1

x1x2 x1x3 x2x3 x1x4 x2x4 x3x4 x1 x2 x3 x4 1

f1

f2

f3

f4

f5

f6

…
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Crossbred algorithm f1 : x1x3 + x2x4 + x1 + x3 + x4 = 0
f2 : x2x3 + x1x4 + x3x4 + x1 + x2 + x4 = 0
f3 : x2x4 + x3x4 + x1 + x3 + 1 = 0
f4 : x1x2 + x1x3 + x2x3 + x3 + x4 + 1 = 0
f5 : x1x2 + x2x3 + x1x4 + x3 = 0
f6 : x1x3 + x1x4 + x3x4 + x1 + x2 + x3 + x4 = 0

Subsystem can be linearised

1 0 0 0 0 0 0 0 0 1 1

0 1 0 0 0 0 1 1 1 1 0

0 0 1 0 0 0 1 1 0 1 0

0 0 0 1 0 0 1 1 1 0 1

0 0 0 0 1 0 0 1 0 0 0

0 0 0 0 0 1 1 1 1 0 1

x1x2 x1x3 x2x3 x1x4 x2x4 x3x4 x1 x2 x3 x4 1

f1
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Crossbred algorithm f1 : x1x3 + x2x4 + x1 + x3 + x4 = 0
f2 : x2x3 + x1x4 + x3x4 + x1 + x2 + x4 = 0
f3 : x2x4 + x3x4 + x1 + x3 + 1 = 0
f4 : x1x2 + x1x3 + x2x3 + x3 + x4 + 1 = 0
f5 : x1x2 + x2x3 + x1x4 + x3 = 0
f6 : x1x3 + x1x4 + x3x4 + x1 + x2 + x3 + x4 = 0

Subsystem can be linearised

1 0 0 0 0 0 0 0 0 1 1

0 1 0 0 0 0 1 1 1 1 0

0 0 1 0 0 0 1 1 0 1 0

0 0 0 1 0 0 1 1 1 0 1

0 0 0 0 1 0 0 1 0 0 0

0 0 0 0 0 1 1 1 1 0 1

x1x2 x1x3 x2x3 x1x4 x2x4 x3x4 x1 x2 x3 x4 1

f1

f2

f3

f4

f5

f6

… } …if we had another 4 equations, the 
subsystem would have a unique 
solution.

Otherwise: check candidate solutions 
against the other equations.
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Crossbred algorithm

Enumerate  variables.h

Parameters of the algorithm: , , , D k d h

Augment system up to degree  (compute degree-  Macaulay matrix).D D

Take the subsystem that is at most degree  in the  chosen variables.d k

Choose  of the remaining variables.k

Enumerate all but the  chosen variables.k

Linearise the subsystem and solve it.

Check if candidate solutions are consistent with the rest of the system.
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Crossbred algorithm

Enumerate  variables.h

Parameters of the algorithm: , , , D k d h

Augment system up to degree  (compute degree-  Macaulay matrix).D D

Take the subsystem that is at most degree  in the  chosen variables.d k

Choose  of the remaining variables.k

Enumerate all but the  chosen variables.k

Linearise the subsystem and solve it.

Check if candidate solutions are consistent with the rest of the system.

The complexity is calculated as the best trade-off between the four parameters.
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Crossbred algorithm

Fukuoka MQ challenge record computations (m = 2n)



Overview of solvers

𝔽2

, big 𝔽q q

FES

SAT solvers

Simple

Crossbred

 / F4 F5

FXL
BoolSolve

Hybrid

45

𝒪(qn)

 / 𝒪(2n) 𝒪(2n− 2m)

𝒪(qn− 2m)

𝒪((
n + Dreg − 1

Dreg )
ω

)

𝒪(…)
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Summary

FES

SAT solvers

Simple

Crossbred

 / F4 F5FXL

BoolSolve Hybrid

(Partial) 
enumeration

Candidate 
solutions 

(subsystem)
Confl Computing a 

Gröbner Basis
Extending to 

higher degrees
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O V
Modelisation: Attacks on UOV
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The trapdoor construction (recall)

A A

Signing Verification

Alice BobCompute:
•
•
•
•  

w = H(m) ∈ 𝔽m
q

x = T−1(w) ∈ 𝔽m
q

y = f −1(x) ∈ 𝔽n
q

z = S−1(y) ∈ 𝔽n
q

Compute:
•
•  

Check if 

w = H(m) ∈ 𝔽m
q

w′￼= p(z) ∈ 𝔽m
q

w′￼= w

mzmm

f, S, T p
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The UOV central map (recall)

Toy example:  , v = 7 m = 4

F(1) F(2) F(3) F(4)

x1 x2 x7… x8 x11…
x1x2

x7

…

x8

x11

…

oil 
variables

vinegar 
variables

*Grayed areas represent the entries that are possibly nonzero; blank areas denote the zero entries;
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Attacks on UOV

• Direct attack

• Reconciliation attack

• Kipnis-Shamir attack

• Intersection attack



O V
Direct attack
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Direct attack

Try to forge a signature with only the knowledge of the public key.
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Direct attack

Try to forge a signature with only the knowledge of the public key.

Constraint for modelisation

For a target , find  such that .w z p(z) = w
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Direct attack

Try to forge a signature with only the knowledge of the public key.

Constraint for modelisation

For a target , find  such that .w z p(z) = w

Equations:

z⊤P(1)z = w1

z⊤P(2)z = w2

…
z⊤P(m)z = wm



  z⊤P(m)z = wm

  z⊤P(2)z = w1

  z⊤P(1)z = w1

70

Direct attack

Try to forge a signature with only the knowledge of the public key.

Constraint for modelisation

For a target , find  such that .w z p(z) = w

Equations:

…



O V
Reconciliation attack 

[Ding, Yang, Chen, Chen, Cheng, 2008]
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The secret subspace O
The map  with a UOV trapdoor vanishes on a linear subspace  of  :p O ⊂ 𝔽n

q dim(O) = m

.p(o) = 0, for all o ∈ O
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Reconciliation attack

Find the secret oil subspace  : find  linearly independent vectors in .O m O
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The polar form

The polar form of a quadratic map  is the bilinear form  such that p = (p(1), …, p(m)) p′￼ = (p′￼(1), …, p′￼(m))

p′￼(k)(x, y) = p(k)(x + y) − p(k)(x) − p(k)(y),  for all k ∈ {1,…, m} .
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= (x + y)⊤P̃(k)(x + y) − x⊤P̃(k)x − y⊤P̃(k)y

= x⊤P̃(k)y + y⊤P̃(k)x

= x⊤(P̃(k) + P̃(k)⊤)y = x⊤B(k)y

So,  is bilinear and symmetric.p′￼
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O V
Kipnis-Shamir attack 

[Kipnis, Shamir, 1998]
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The orthogonal complement of a subspace

Let . The orthogonal complement of  is  such thatV ⊂ 𝔽n
q V V⊥

.V⊥ = {ṽi ∈ 𝔽n
q |⟨vj, ṽi⟩ = 0, for all vj ∈ V}

If  is -dimensional, then  is -dimensional.V m V⊥ (n − m)
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O V
Intersection attack 

[Beullens, 2021]
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p(B(k1)−1x) = 0
p(B(k2)−1x) = 0
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The attack can be generalised to find a vector in the intersection of more than two subspaces.
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Recap

‣ The MQ problem is (usually) hard.

‣ We have a variety of solvers for (over)determined systems.

‣ Modelisation can be crucial to how efficient an attack is.

‣ The MQ problem can be easy for some structured systems. We use this to build trapdoors in crypto.

‣ We saw three different ways to model the recovery of the UOV trapdoor.
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