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Algebraic cryptanalysis

k A type of cryptanalytic methods where the problem of finding the secret key
(or any attack goal) is reduced to the problem of finding a solution to a

nonlinear multivariate polynomial system of equations.
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The MQ problem (recall)

Given m multivariate quadratic polynomials fi, ..., f,, of n variables
over a finite field F , find a tuple X = (xy,...,x,) in [}, such that

fX) = .. = f(x) = 0.

EXQMPLQQ ]Cl : X1X3 + x2X4 + xl + X3 + X4 — O
]Cz . X2X3 +X1X4+X3X4+xl +xZ+X4 — O

]C3 :XZX4+X3X4+.X1+X3+ 1 =O

f;l . .XIXZ XI.X3 xe3 X3 .X4 1 — O
]CS . .xle + X2X3 ~+ X1X4 + X3 o O

f6:x1x3 +X1X4+X3X4+X1+X2+X3 +X4:O



Overview of solvers

SAT solvers

FES



stive Search

en, Cheng, rhagen; Sh ang, 2010]
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Exhaustive Search

h Worst-case complexity: O(2")
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Binary search tree
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Fast Exhaustive Search

* The ibFES solver

Gray code

® An ordering of the binary system where two successive values differ in only one bit.

Exam[pi.@.. n=4
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1000



Fast Exhaustive Search
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Fast Exhaustive Search
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CryptoMiniSe a, 2009], WDSat [T., Dequen, Ionica, 2020}



(SAT solvers)

e Propositional formula in Conjunctive Normal Form (CNF): a conjunction of clauses where each clause is a
disjunction of literals and where each literal is a variable or a negated variable.

Examyte. (X1 V 7x) A
(X, VX3V Xxy) A

(7x; V Xy)
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(SAT solvers)

e Propositional formula in Conjunctive Normal Form (CNF): a conjunction of clauses where each clause is a
disjunction of literals and where each literal is a variable or a negated variable.

Exam[pt@.. (X1 V =) A
(X, VX3V Xxy) A

(_'.xl V X4)

Given a propositional formula, determine whether there exists an
interpretation (assignment of all variables) such that the formula is
satisfied (evaluates to TRUE).

k SAT solver: a tool for solving the SAT problem.



Partial assignment and conflicts

1 -0+ 1  x3+x3-T4+23=0

0 -3+ 0 -x4+1+0+1=0
1-0+0 - 23+0 s+ 1 +x4=0
1 x4+ 0 x3+ 0 +x3+24 =0



Partial assignment and conflicts

Which (portion of) branches are missing ??

1 -0+ 1  x3+x3-24+23=20

0 -x3+ 0 -xa+1+0+1=0
1-0+0 -23+0 24+ 1 +24=0
1 4+ 0 23+ (0 +tx3+x4=0



Partial assignment and conflicts

Which (portion of) branches are missing ??

L-V Worst-case complexity: O(2")

1 -0+ 1  x3+x3-24+23=20

0 - z3+ (0 -x4+1+0+1=0

1 -0+0 @3+ 0 24+ 1 +x4=0
1 T4+ 0 23+ 0 +x3tza=0



Partial assignment and conflicts

Which (portion of) branches are missing ??

L-V Worst-case complexity: O(2")

n 1 -0+ 1 -23+x3-24+23=0
0 -3+ (0 x4+ 1 +0 +1=0
:\ ‘.\ . 1 -0 +0 23+ x4+ 1 +x4=0
A A A i . A \ A 1 T4+ 0 23+ 0 +x3tza=0

XOR-enabled SAT solvers: take as input XOR constraints as well; perform Gaussian elimination;
“CryptoMiniSat, WDSat
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[Linearisation

Linear systems are easy to solve, nonlinear systems are hard.

L-V Linearisation: for each nonlinear monomial, replace all of its occurrences by a new variable.

Exa\m[pi@.‘

h
b
/3
Ja
fs
Jo

P XXy XX X X +x,=0

XX+ XXy F XXy X+ X +x, =0
L XXy F XX+ X X3+ 1 =0

L XX F XX XX+ +x+1 =0
L XX + XXy + XX + X3 =0

:x1X3 +X1X4+X3X4+X1+X2+X3 +.X4=O

h
b
/3
Ja
Js
Jo

Y+ ys+x+x3+x,=0

Vit V3 Yt X+ X +x,=0
Vst Yet+x +x3+1=0

Vi + Yty tx+x+1=0
Yty a3 =0

Y+ V3 Yt X X+ x3+x,=0



[Linearisation

Linear systems are easy to solve, nonlinear systems are hard.

L-V Linearisation: for each nonlinear monomial, replace all of its occurrences by a new variable.

E;xam[pie‘
‘fl:xl.X3+x2.X4+xl+X3+X4=O fi:y2+y5+xl+X3+X4=O
XXy +xxg+x3%+x+x+x,=0 Hhivi+ys+ys+x+x+x,=0

Hixox,+x0+x+x3+1=0 ) HRiys+ye+x+x3+1=0

Ja 1X0H X5+ Xx3+x53+x,+ 1 =0 ; Vo+ Vi +x3+x,+1=0

fs 1202 H X0x5 + X%, + x5 =0 AVt y3+x3=0

Jo i X X3 X x4 + 23+ X+ X+ x3+x, =0 Je v+ m+ye+x+x+x3+x,=0




[Linearisation

‘ Linearisation adds solutions: a random quadratic system of m equations in n variables, when n = m, is

expected to have one solution (probability is ~ — for systems over [ ). The corresponding linearised
q

n+ 1
system has a solution space of dimension ( ) — m.

n
T— <2> quadratic plus n linear monomials



[Linearisation

‘ Linearisation adds solutions: a random quadratic system of m equations in n variables, when n = m, is

expected to have one solution (probability is ~ — for systems over [ ). The corresponding linearised
q

n+ 1
system has a solution space of dimension ( ) — m.

n
T— <2> quadratic plus n linear monomials

Loss of information: e.g. assignment x; = 1; x, = 0; y, = 1, is part of a valid solution to the linearised
system, but x;x, # y;.




Macaulay matrix

Equations

Monomials

X1Xo XA

XX,

X1

XrX5

XrXy

%%)

X3Xy

A3

Ix1x3 +X2X4+X1+XB +X4=O

:x2X3 +XIX4+.X3X4+X1+X2+X4:O

:X2X4+X3X4+X1+X3+ 1 :O

:X1X2+X1X3 +.X2X3 +.X3 +.X4+ 1 :O
lexz +X2X3 +xl.X4 +X3 — O

:xl.X3 +XIX4+.X3X4+X1+.X2+X3 +X4:O




Macaulay matrix

Monomials

Ix1x3 +X2X4+X1+XB +X4=O

' P XX X Xy XXy X X+ x, =0
Equations XXy XX XiXg X XXz XXy Xy XXy, X3 Xy 1 X3 T XXy T X3Xy T X T X T Xy

:X2X4+X3X4+X1+X3+ 1 :O

fil O 1 0 1 0 1 0 0 1 1

£1 0 0
A1 0 0 o 1 0 1
0

:X1X2+X1X3 +.X2X3 +.X3+.X4+ 1 :O

. x1x2 + X2X3 + xl.X4 + X3 — O

1 1 1 0 1 1 0 1

:.XIX3 +XIX4+X3X4+.X1+.X2+X3 +X4:O

o 1 1 o0 1
Ll 1 1 1 1 0 O 0 1 1 1
511 o 1 1 1 0 0 0 1 o0 O
sflO 1 1 1 0o o0 1 1 1 1 0




oorithm

|Bouillag



Simple algorithm

— Partial assignment
— Gaussian elimination

1 -0+ 1 -x3+x3-x4+x3=0
0 -xz3+ 0 -24+1+0+1=0
1 24+ 0 23+ 0 +tx3+x4=0



Simple algorithm

Guess sufficiently many variables so that the remaining
polynomial system can be solved by linearization.



Simple algorithm: complexity
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Simple algorithm: complexity

e 71 - number of variables

e /m - number of equations

L-y Enumeration ends when:

number of monomials < number of equations

(%)=

& oV

— See also: Quantum BDT [Edme, Fouque, Schrottenloher]
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Grobner basis algorithms (intuition)

*We are essentially describing the XL algorithm.

XXy XXz X1X5 X XoXz XXy Xy XX, X3 Xy 1

£1lo 1 o 1 0 1 0 0 1 1
5| o

o O

0 1 1 1 0 1 1 0 1
0

L1 0 o 1 o 1 0o 1 1 0 1
fil1 1 o 1 1 o0 o0 0 1 1 1
s{1 o 1 1 1 0 0 0O 1 0 O
sl 0O 1 1 1 o0 0 1 1 1 1 0




:.X1X3 +X2X4+X1+.X3 +.X4:O

Grobner basis algorithms (intuition) vy s by 0

*We are essentially describing the XL algorithm. PXXy Xy + X x5+ 1 =0
L XX F XX XX+ +x+1 =0

. X1X2 + X2X3 + X1X4 + .X3 — O

:X1X3 +X1X4+X3X4+XI+X2+X3 +X4=O

X1Xy X1 X3 X1 X4  Xp XXz XoX4 Xy X3Xy X3 Xy 1
flo 1 o0 1 o0 1 o0 0 1 1 0
10 o 1 1 1 o0 1 1 0 1 0
10 o o 1 o 1 o0 1 1 0 1
fil1 1 o 1 1 o0 o0 0 1 1 1
s{1 o 1 1 1 0 0 0O 1 0 O
sl 0O 1 1 1 o0 0 1 1 1 1 0




:.X1X3 +X2X4+X1+.X3 +.X4:O

Grobner basis algorithms (intuition) vy s by 0

*We are essentially describing the XL algorithm. XXy + XXy + X+ x5+ 1 =0

L XX F XX XX+ +x+1 =0

D=3 :.X1X2+X2X3+X1X4+X3:O

:X1X3 +X1X4+X3X4+XI+X2+X3 +X4=O

XXy XXz XAy X XpX3 XoXy Ay A3Xy X3 Ay 1 X1XpX3 X1 XoXq XjX3Xy XpX3Xy
fil O 1 0 1 0 1 0 0 1 1 0
fH |1 O 0 1 1 1 0 1 1 0 1 0
| O 0 0 1 0 1 0 1 1 0 1
Ja | 1 1 0 1 1 0 0 0 1 1 1
fs | 1 0 1 1 1 0 0 0 1 0 0
Jo | O 1 1 1 0 0 1 1 1 1 0
X1/
X /1




:.X1X3 +X2X4+X1+.X3 +.X4:O

Grobner basis algorithms (intuition) vy s by 0

*We are essentially describing the XL algorithm. XXy + XXy + X+ x5+ 1 =0

L XX F XX XX+ +x+1 =0

D=4 :.X1X2+X2X3+X1X4+X3:O

:X1X3 +X1X4+X3X4+XI+X2+X3 +X4=O

X1 X X1 X3 X1Xq  X| XoXz XpXy Xy XXy X3 Xy 1 X1XpX3 X1 XXy XXzXy XoXa3Xy X1XpXzXy

fil O 1 0 1 0 1 0 0 1 1 0

f» 1 O 0 1 1 1 0 1 1 0 1 0

L | O 0 0 1 0 1 0 1 1 0 1

fa | 1 1 0 1 1 0 0 0 1 1 1

fs | 1 0 1 1 1 0 0 0 1 0 0

Jo | O 1 1 1 0 0 1 1 1 1 0
X1/
X /1
X1 X fi
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(GrOobner basis

o Let R =F [x,...,x,] be the polynomial ring in n variables.
e Anideal in R is an additive subgroup I such thatif g € Randf € I, then gf € L.

e The subset {f;,...,f,} C Risa set of generators for an ideal / if every element ¢ € [ can be written in the form
n

1

e By the Hilbert basis theorem: every ideal in R has a finite set of generators.

e The subset of R defined as V(1) = {(ay, ..., a,) € Folfay, ....a,) = 0forallf €[]
is called an algebraic variety. It is the set of all solutions to the system of equations

f](xp ...,Xn) — ... zfl(xl, ...,.Xn) = (.

e By the Nullstellensatz: I(V(I)) = I, where I(V') denotes the ideal of V, i.e. I(V) = {f € R|f(a) = O for all a € V}
(Similar to Gauss’ fundamental theorem, but for polynomials in many variables).
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(GrOobner basis

e A Grobner basis of an ideal [ is a set of generators with some nice (useful) property.

L-V For our case, the nice property is that a solution can be extracted easily from the Grébner basis.

EXQMF.'LQ‘ The shape of a GB with respect to the lexicographic order

][1 :x1X3 +X1+X2X4+x5+x6+ =O
fé:x1X4+x1+XZX3 +.XZ+.X3X4“X3.X6+.X4+X5=O
Hixxs+x+x+xx+x,+1=0

Ja i X% Fx X3+ XX +x3+x,+x,+1 =0

f5 @ X1X4 + XoX3 + XX + XX + 1 =0
Jo t XXz + X1 x4 + X + X5 + X3Xg + X3+ x5 =0



(GrOobner basis

e A Grobner basis of an ideal [ is a set of generators with some nice (useful) property.

L-V For our case, the nice property is that a solution can be extracted easily from the Grébner basis.

EXQMF.'LQ‘ The shape of a GB with respect to the lexicographic order

flixpxia+x+xx+x5+x,+1=0 X+ xe =0

fo XX+ X+ XoX3 + Xy + X3, + XX + X4+ x5 =0 51Xy + x5 =0 S
HLixxs+x+x+xx5+x+1=0 ' X3+ x,=0 o
faix %+ x%+Xx5+x3+x+x,+1=0 10Xy + X =0 *

f5 @ X1X4 + XoX3 + XX + XX + 1 =0 51X =

Jo t XXz + X1 x4 + X + X5 + X3Xg + X3+ x5 =0



(GrOobner basis

e A Grobner basis of an ideal [ is a set of generators with some nice (useful) property.

L-V For our case, the nice property is that a solution can be extracted easily from the Grébner basis.

EXQMF.'LQ‘ The shape of a GB with respect to the lexicographic order

flixpxia+x+xx+x5+x,+1=0 fi:x+x=0

fo XX+ X+ XoX3 + Xy + X3, + XX + X4+ x5 =0 fhixy+x,=0 S
HLixxs+x+x+xx5+x+1=0 ' fiix34+x,=0 o
foixiX+Fx X3+ XX+ +x,+x,+1=0 faixg+x,+1=0 *

f5 @ X1X4 + XoX3 + XX + XX + 1 =0 fsix5=0

Jo t XXz + X1 x4 + X + X5 + X3Xg + X3+ x5 =0

V(<fi,.--.Je > ) =1(0,0,0,1,0,0), (1,1,1,0,0,1)}

did



Grobner basis algorithms:

Buchberger, Lazard, F4, F5

( Follow the core idea that we described, but combine the equations in an organised way, rather than multiplying
them by all possible monomials.

Not covered in this talk:

® Monomial orders

® S-polynomials

® Polynomial long division
® Row reduction in parallel
® Reductions to zero

® Syzygy criterion
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n+D,,,—1 ’
O | mD,,,
Dreg



XL/ Grobner basis algorithms: complexity

n+D,,,—1 ’
O | mD,,,
Dreg

D, degree of regularity

reg-

(1 — 5™
(1 =1

L.y the power of the first non-positive coefficient in the expansion of
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limov, Patarin, Shamir, 2000]

brid

ret, 2009



FXL, Hybrid, BoolSolve

Techniques are already covered in the previous section.

Algorithms will be explained in the summary.



d algorithm

17]



:.X1X3 +X2X4+X1+.X3 +.X4:O

CTOSSbred algorithm L XXy + XXy F XXy X+ +x, =0

:XZ.X4+.X3X4+X1+X3+ 1 :O

L XX F XX XX+ +x+1 =0

. X1X2 + X2X3 + X1X4 + .X3 — O

:X1X3 +X1X4+X3X4+XI+X2+X3 +X4=O

XXy XXz X1X5 X XoXz XXy Xy XaXy X3 Xy 1
fil O 1 0 1 0 1 0 0 1 1 0
H1 0 0 1 1 1 0 1 1 0 1 0
L1 O 0 0 1 0 1 0 1 1 0 1
Ja | 1 1 0 1 1 0 0 0 1 1 1
fs | 1 0 1 1 1 0 0 0 1 0 0
Jo | O 1 1 1 0 0 1 1 1 1 0




:.X1X3 +X2X4+X1+.X3 +X4:O

CTOSSbred algorithm L XXy + XXy F XXy X+ +x, =0

L XXy X3+ X +x3+1 =0

L XX F XX XX+ +x+1 =0

—> Put matrix in reduced row echelon form
. X1X2 + X2X3 + .X1X4 + .X3 — O

:X1X3 +X1X4+X3X4+XI+X2+X3 +X4=O

XXy XjX3 XoXz XiX; XXy XXq4 X1 Xy X3 Xy 1
£l1 o o o 0O O O 0 0 1 1
£l0 1 o o 0o o 1 1 1 1 o0
#lo o 1 o 0o 0 1 1 0 1 0
flo o o 1 o o0 1 1 1 0 1
£lo o o o 1 0 0 1 0 0 O
flo o o o 0o 1 1 1 1 0 1




:.X1X3 +X2X4+X1+.X3 +.X4:O

CTOSSbred algorithm L XXy + XXy F XXy X+ +x, =0

:XZ.X4+.X3X4+X1+X3+ 1 :O

L XX F XX XX+ +x+1 =0

— Take linear subsystem
. X1X2 + X2X3 + X1X4 + .X3 — O

Xy XiXs X3 MMy oy XXy 4 H 4 4 X1+ X0+ X3y X+ X+ =0
fl1t 0 0 O O0O o O0O O o0 1 1
flO t 0 o0 O0o o 1 1 1 1 0
/fl0 0 t o0 o0 Oo 1 1 0 1 O
4l 0 0 0 t o0 O0O 1 1 1 0 1
{0 0 o0 o0 1 0 0 1 0 0 O
sy 0 0 0 o0 o0 1t 1 1 1 0 1

...if we had another 4 equations



:.X1X3 +X2X4+X1+.X3 +X4:O

CTOSSbred algorithm L XXy + XXy F XXy X+ +x, =0

L XXy X3+ X +x3+1 =0

L XX F XX XX+ +x+1 =0

. X1X2 + X2X3 + .X1X4 + .X3 — O

:X1X3 +X1X4+X3X4+XI+X2+X3 +X4=O

X1Xy XiX3 XoXz XiXg XoXg4 X3X4 X; Xy X3 Xy 1
fi| 1 0 0 0 0 0 0 0 0 1 1
1 O 1 0 0 0 0 1 1 1 1 0
il O 0 1 0 0 0 1 1 0 1 0
fal O 0 0 1 0 0 1 1 1 0 1
fs1 O 0 0 0 1 0 0 1 0 0 0
Jo| O 0 0 0 0 1 1 1 1 0 1




:.X1X3 +X2X4+X1+.X3 +X4:O

CTOSSbred algorithm L XXy + XXy F XXy X+ +x, =0

L XXy X3+ X +x3+1 =0

L XX F XX XX+ +x+1 =0

— Subsystem is linear in variables {x;, x,, X3 }.
. X1X2 + X2X3 + .X1X4 + .X3 — O
—> Enumerating x, will result in a linear subsystem. X1+ X X X X+ 4 Xy = 0

X1Xy XiX3 XoXz XiXg XoXg4 X3X4 X; Xy X3 Xy 1
fi| 1 0 0 0 0 0 0 0 0 1 1
1 O 1 0 0 0 0 1 1 1 1 0
il O 0 1 0 0 0 1 1 0 1 0
fal O 0 0 1 0 0 1 1 1 0 1
fs1 O 0 0 0 1 0 0 1 0 0 0
Jo| O 0 0 0 0 1 1 1 1 0 1




:.X1X3 +X2X4+X1+.X3 +X4:O

CTOSSbred algorithm L XXy + XXy F XXy X+ +x, =0

:X2X4+.X3X4+X1+X3+ 1 :O
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f#l0 o 1 o o o 1 1 o0 1 o0
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— Subsystem can be linearised
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f#l0 o 1 o o o 1 1 o0 1 o0
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:.X1X3 +X2X4+X1+.X3 +X4:O

CTOSSbred algorithm L XXy + XXy F XXy X+ +x, =0

L XXy X3+ X +x3+1 =0

L XX F XX XX+ +x+1 =0

— Subsystem can be linearised
. X1X2 + X2X3 + .X1X4 + .X3 — O

:X1X3 +X1X4+X3X4+XI+X2+X3 +X4=O

XXy XiX3 XoXz XiX; XXy XXq4 X1 Xy X3 Xy 1
£l1 0o o o 0 O 0O 0 0 1 1
£l0 1 o o 0o o 1 1 1 1 o0
f#l0 o 1 o o o 1 1 o0 1 o0
flo o o 1 o o0 1 1 1 0 1
£lo o o o/ 1 0 0O 1 0 0 O
flo o o o/ 0 1 1 1 1 0 1

...if we had another 4 equations, the
subsystem would have a unique
solution.

Otherwise: check candidate solutions
against the other equations.



Crossbred algorithm

Parameters of the algorithm: D, k, d, h

Enumerate / variables.

Choose k of the remaining variables.

Augment system up to degree D (compute degree-D Macaulay matrix).
Take the subsystem that is at most degree  in the k chosen variables.
Enumerate all but the k chosen variables.

Linearise the subsystem and solve it.

TR

Check if candidate solutions are consistent with the rest of the system.



Crossbred algorithm

Parameters of the algorithm: D, k, d, h

Enumerate / variables.

Choose k of the remaining variables.

Augment system up to degree D (compute degree-D Macaulay matrix).
Take the subsystem that is at most degree  in the k chosen variables.
Enumerate all but the k chosen variables.

Linearise the subsystem and solve it.

R

Check if candidate solutions are consistent with the rest of the system.

h The complexity is calculated as the best trade-off between the four parameters.



Crossbred algorithm

Number of
Variables (n)

Seed (0,1,2,3,4)

Date

Contestants

Computational
Resource

Data

83

74

74

66

Fukuoka MQ challenge record computations (m = 2n)

2023/09/16

2016/12/17

2017/11/15

2016/01/22

Charles
Bouillaguet and
Julia Sauvage

Antoine Joux

Kai-Chun Ning,
Ruben
Niederhagen

Tung Chou, Ruben
Niederhagen, Bo-
Yin Yang

https://gitlab.lip6.
fr/almasty/hpXbre
d, 3488 AMD EPYC
7113 cores on the
Oracle public
cloud

New hybridized XL
related algorithm,
Heterogeneous
cluster of Intel
Xeon @ 2.7-3.5
Ghz

Parallel Crossbred,
54 GPUs in the
Saber cluster

Gray Code
enumeration,
Rivyera, 128

Spartan 6 FPGAs

Details

Details

Details

Details
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Candidate

solutions

B
A Xy XAz XpX3 XXy KoKy A3Xy
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(Partial)
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Computing a

enumeration rees GrOobner Basis
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0 0
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summary

Partial Candidate , Extending to Computing a
( ) solutions Conflict search , 5 P 5

enumeration rObner Basis

Xy X3  XoXy Xy  X3Xy X3 1 X1X9X3 X XnXy XIX3x4 x2x3X4 X1XoX3Xy

0 1 0 0 0

1 0 1 0
0 1 1
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The trapdoor construction (recall)

Compute:

ow=H(m)€[FZL oW=H(m)€[FZl
o x=T'(w) eF) oW =p(z) €F)

oy=f'(x)€F]
o 7Z = S_l(y) - ﬂ:g Check if w =w




The UOV central map (recall)

Toy example: v="7,m =4

vinegar oil
variables variables
| | |
x1 xz o o o x7 .XS o o o x11

F( F(2) FO)

*Grayed areas represent the entries that are possibly nonzero; blank areas denote the zero entries;



Attacks on UOV

e Direct attack
e Reconciliation attack
e Kipnis-Shamir attack

e Intersection attack
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Direct attack

h Try to forge a signature with only the knowledge of the public key.
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The secret subspace O

The map p with a UOV trapdoor vanishes on a linear subspace O C IF’Z] of dim(O) = m :
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The secret subspace O

The map p with a UOV trapdoor vanishes on a linear subspace O C [F of dim(O) = m :

p(0) =0, forallo € O.
Why ?

Let O’ € | be the m-dimensional space that consists of all the vectors whose first n —m entries (corresponding to the
vinegar variables) are zero: O’ = {v|v; =0 foralli < n — m}.

L-V fvanishes on O’

Let O = S71(O).

L-V p vanishes on O.



Reconciliation attack

h Find the secret oil subspace O : find m linearly independent vectors in O.



The polar form

The polar form of a quadratic map p = (p'Y, ..., p'™) is the bilinear form p’ = (p 1, ..., p ™) such that

pYxy) =pPx+y) - pPx) - p(y), forallk € {1,...,m}.
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The polar form

The polar form of a quadratic map p = (p'Y, ..., p'™) is the bilinear form p’ = (p 1, ..., p ™) such that
pPx,y) =pPx+y) - pPYx) - pWy), forallk € {1,...,m} .

What does p ®(x, y) look like ?

Let P® be the upper triangular representation of p®.

pPx,y) = pPx+y) - pPx) - p(y)
= (x+y) PPx+y) —xPPx —yPWy
= xPWy 4 y PPy
= xT(P® + PWTyy = xTBWy

— 5o, p'is bilinear and symmetric.
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h Find the secret oil subspace O : find m linearly independent vectors in O.
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For any vector 0; € O, we have that o] PYo, = 0 for all k € {1,...,m}.
For any pair of vectors 0;,0, € O, we have that OiTB(k)Oj =Q0forallk e {l1,...,m}.

— Equations:
Fori € {1,...,m} do

Oi — (01, ceey O O,...,ln_i+1,0,...,0)
Model:

OiTB(k)Oj =0,forke{l,....m}andj <1

OiTP(k)Ol- =0,forke {l,...,m}

( o In the first iteration, we have only quadratic equations, so this is the bottleneck. Linear constraints facilitate

the resolution of a system. !
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The orthogonal complement of a subspace

Let V C [}. The orthogonal complement of V'is V+ such that

1 rg n S\ —
V== {v,eF (v, V) =0, forallv;, € V}.

If V is m-dimensional, then V+ is (n — m)-dimensional.
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Kipnis-Shamir attack

h Find the secret oil subspace O. Works well for the balanced case (n = 2m) - the original proposal of OV.
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|
i For each B®, we have that BP0 c O+

' Since dim(O1) = n — m = m, we have that BP0 = 0.

. Since this is true for all B®, we have that B0 = 0+ = B&)(.
. Hence, we have that B®~1B®)0 = 0, for all pairs B, B*).
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— Finding a common invariant subspace of a large number of linear maps is easy.



Kipnis-Shamir attack

h Find the secret oil subspace O. Works well for the balanced case (n = 2m) - the original proposal of OV.

- - - - (Constraint for modelisation - - ------ - - - - - - - - - - - - - - - - = = - - - - & - —— - - — - — — —

|
i For each B®, we have that BP0 c O+

' Since dim(O1) = n — m = m, we have that BP0 = 0.

. Since this is true for all B®, we have that B0 = 0+ = B&)(.
. Hence, we have that B®~1B®)0 = 0, for all pairs B, B*).

(0,,B¥0,) = 0)BWo,

— P,(k)(ola 02)
= P(k)(01 + 0,) _P(k)(ol) —P(k)(Oz) =0

— Finding a common invariant subspace of a large number of linear maps is easy.

— QOil and Vinegar becomes Unbalanced Oil and Vinegar because of this attack.
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Intersection attack

k Find the secret oil subspace O. Use the ideas of the Kipnis-Shamir attack, but for the unbalanced case (n > 2m).

- - - - (Constraint for modelisation - - ----- - - - - - - - - - - - - - - - - = = = = - & & - ——— - — - — — —

Since n > 2m, dim(0+) > m. We still have B0 c Ot and B0 c 0+, but they are not (necessarily) the same
subspace.

Idea: assuming that B0 n B®O # @, try to find a vector x in this intersection.
If X is in the intersection B0 N B%)0, then both B*)~1x and B%)~Ix are in O.

— Equations:
p(B*'x) =0
p'(B*-1x B&)-lx) = (

— The attack can be generalised to find a vector in the intersection of more than two subspaces.



Recap

» The MQ problem is (usually) hard.

» We have a variety of solvers for (over)determined systems.
» Modelisation can be crucial to how efficient an attack is.
» The MQ problem can be easy for some structured systems. We use this to build trapdoors in crypto.

» We saw three different ways to model the recovery of the UOV trapdoor.
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